SALINITY TOLERANCE OF QUINOA (CHENOPODIUM QUINOA WILLD.) GENOTYPES TO ELEVATED NACL CONCENTRATIONS AT GERMINATION AND SEEDLING STAGES

被引:1
|
作者
Al-Naggar, A. M. M. [1 ]
ABD El-Salam, R. M. [1 ]
Hassan, A. I. A. [2 ]
El-Moghazi, M. M. A. [2 ]
Ahmed, A. A. [3 ]
机构
[1] Cairo Univ, Fac Agr, Dept Agron, Giza, Egypt
[2] Desert Res Ctr, Plant Breeding Unit, Plant Genet Resources, Cairo, Egypt
[3] Agr Res Ctr, Field Crops Res Inst, Seed Technol Res, Giza, Egypt
来源
关键词
Quinoa; salinity tolerance; germination; seedling stage; selection criteria; heritability; SALT TOLERANCE; PHYSIOLOGICAL TRAITS; WATER RELATIONS; GROWTH; STRESS; ACCUMULATION; IDENTIFICATION; RESISTANCE; CULTIVARS; MARKERS;
D O I
10.54910/sabrao2023.55.5.30
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Evaluating quinoa genotypes for salinity tolerance at germination and seedling stages is a prerequisite for plant breeders. Thus, the scrutiny of 19 quinoa genotypes at different salinity levels under controlled laboratory and greenhouse conditions occurred at the germination and seedling stages. This study aimed to identify the most tolerant genotypes to elevated salinity levels at germination and seedling stages and to determine the traits of a robust association with salinity tolerance using a factorial experiment based on a randomized complete block design in three replications. The four salinity solutions used were zero (control), 3000, 6000, and 9000 ppm NaCl. Increasing concentrations of NaCl caused a gradual and significant decrease for all studied traits except mean germination time, which significantly increased. At all salinity-stress levels (3000, 6000, and 9000 ppm NaCl), the studied 19 genotypes underwent classification based on their salinity tolerance index (STI) into three categories, i.e., tolerant, moderately tolerant, and sensitive. The four most salinity-tolerant quinoa genotypes under all studied salinity-stress conditions were Rainbow-2, Ql3, RH, and KvlSRA2. The strongest correlations were between STI and each of seedling length, root length, seedling fresh weight, seedling vigor index I, and seedling vigor index II under 3000 ppm; germination percentage, speed germination index, seedling extent, root length, seedling fresh weight, and seedling vigor index II under 6000 ppm; and shoot length and seedling vigor index I under 9000 ppm salinity concentration level. Traits showing sturdy correlations with STI, high heritability estimates, high expected genetic advance, and wide phenotypic and genotypic variability were seedling dry weight, seedling fresh weight, seedling vigor index II, and speed germination index at all salinity stress concentrations; they are recommendable as selection criteria for salinity tolerance in quinoa at germination and seedling stages.
引用
收藏
页码:1789 / 1802
页数:14
相关论文
共 50 条
  • [21] Nutritional and biological value of quinoa (Chenopodium quinoa Willd.)
    Vilcacundo, Ruben
    Hernandez-Ledesma, Blanca
    CURRENT OPINION IN FOOD SCIENCE, 2017, 14 : 1 - 6
  • [22] Evaluation of quinoa (Chenopodium quinoa Willd.) in coeliac disease
    Zevallos, V.
    Ciclitira, P. J.
    Suligoj, T.
    Herencia, L. I.
    Ellis, H. J.
    PROCEEDINGS OF THE NUTRITION SOCIETY, 2007, 66 : 69A - 69A
  • [23] Breeding quinoa (Chenopodium quinoa Willd.): potential and perspectives
    Andrés Zurita-Silva
    Francisco Fuentes
    Pablo Zamora
    Sven-Erik Jacobsen
    Andrés R. Schwember
    Molecular Breeding, 2014, 34 : 13 - 30
  • [24] Seed weight determination in quinoa (Chenopodium quinoa Willd.)
    Gomez, Maria B.
    Curti, Ramiro N.
    Bertero, Hector D.
    JOURNAL OF AGRONOMY AND CROP SCIENCE, 2022, 208 (02) : 243 - 254
  • [25] Breeding quinoa (Chenopodium quinoa Willd.): potential and perspectives
    Zurita-Silva, Andres
    Fuentes, Francisco
    Zamora, Pablo
    Jacobsen, Sven-Erik
    Schwember, Andres R.
    MOLECULAR BREEDING, 2014, 34 (01) : 13 - 30
  • [26] EVALUATION OF THE ALLELOPATHIC POTENTIAL OF QUINOA (CHENOPODIUM QUINOA WILLD.)
    Bilalis, Dimitrios J.
    Travlos, Ilias S.
    Karkanis, Anestis
    Gournaki, Maria
    Katsenios, Giannis
    Hela, Dimitra
    Kakabouki, Ioanna
    ROMANIAN AGRICULTURAL RESEARCH, 2013, 30 : 359 - 364
  • [27] Sustainability of quinoa (Chenopodium quinoa Willd.) production systems
    Pinedo-Taco, Rember
    Gomez-Pando, Luz
    Julca-Otiniano, Alberto
    ECOSISTEMAS Y RECURSOS AGROPECUARIOS, 2018, 5 (15): : 399 - 409
  • [28] Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.)
    Nowak, Verena
    Du, Juan
    Charrondiere, U. Ruth
    FOOD CHEMISTRY, 2016, 193 : 47 - 54
  • [29] Frost resistance mechanisms in quinoa (Chenopodium quinoa Willd.)
    Jacobsen, S.-E.
    Monteros, C.
    Corcuera, L. J.
    Bravo, L. A.
    Christiansen, J. L.
    Mujica, A.
    EUROPEAN JOURNAL OF AGRONOMY, 2007, 26 (04) : 471 - 475
  • [30] Responses of quinoa (Chenopodium quinoa Willd.) seeds stored under different germination temperatures
    Strenske, Andressa
    de Vasconcelos, Edmar Soares
    Egewarth, Vanessa Aline
    Michelon Herzog, Neusa Francisca
    Malavasi, Marlene de Matos
    ACTA SCIENTIARUM-AGRONOMY, 2017, 39 (01): : 83 - 88