Indoor Positioning System (IPS) Using Ultra-Wide Bandwidth (UWB)-For Industrial Internet of Things (IIoT)

被引:32
作者
Che, Fuhu [1 ]
Ahmed, Qasim Zeeshan [1 ]
Lazaridis, Pavlos I. [1 ]
Sureephong, Pradorn [2 ]
Alade, Temitope [3 ]
机构
[1] Univ Huddersfield, Dept Comp & Engn, Huddersfield HD1 3DH, England
[2] Chiang Mai Univ, Coll Arts Media & Technol, Chiang Mai 50200, Thailand
[3] Nottingham Trent Univ, Sch Sci & Technol, Dept Comp Sci, Nottingham NG11 8NS, England
关键词
UWB; indoor positioning system; localization; machine learning; NLoS; TO-UAV COMMUNICATIONS; ERROR-CORRECTION; MULTIPLE-ACCESS; NEURAL-NETWORKS; IMPULSE RADIO; UWB; LOCALIZATION; ANTENNA; SENSOR; CLASSIFICATION;
D O I
10.3390/s23125710
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The integration of the physical and digital world has become increasingly important, and location-based services have become the most sought-after application in the field of the Internet of Things (IoT). This paper delves into the current research on ultra-wideband (UWB) indoor positioning systems (IPS). It begins by examining the most common wireless communication-based technologies for IPSs followed by a detailed explanation of UWB. Then, it presents an overview of the unique characteristics of UWB technology and the challenges still faced by the IPS implementation. Finally, the paper evaluates the advantages and limitations of using machine learning algorithms for UWB IPS.
引用
收藏
页数:29
相关论文
共 115 条
[1]  
Abdulhadi AE, 2017, IEEE J RADIO FREQ ID, V1, P115, DOI 10.1109/JRFID.2017.2739202
[2]  
Ahmed Q. Z., 2020, P IEEE 8 INT C COMM, P1
[3]  
Ahmed Q.Z., 2008, P 2008 IEEE 68 VEH T, P1, DOI DOI 10.1109/VETECF.2008.414
[4]   Least mean square aided adaptive detection in hybrid direct-sequence time-hopping ultrawide bandwidth systems [J].
Ahmed, Qasim Zeeshan ;
Liu, Wei ;
Yang, Lie-Liang .
2008 IEEE 67TH VEHICULAR TECHNOLOGY CONFERENCE-SPRING, VOLS 1-7, 2008, :1062-1066
[5]   Compression and Combining Based on Channel Shortening and Reduced-Rank Techniques for Cooperative Wireless Sensor Networks [J].
Ahmed, Qasim Zeeshan ;
Park, Ki-Hong ;
Alouini, Mohamed-Slim ;
Aissa, Sonia .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2014, 63 (01) :72-81
[6]   Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications [J].
Al-Fuqaha, Ala ;
Guizani, Mohsen ;
Mohammadi, Mehdi ;
Aledhari, Mohammed ;
Ayyash, Moussa .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2015, 17 (04) :2347-2376
[7]   Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances [J].
Alarifi, Abdulrahman ;
Al-Salman, AbdulMalik ;
Alsaleh, Mansour ;
Alnafessah, Ahmad ;
Al-Hadhrami, Suheer ;
Al-Ammar, Mai A. ;
Al-Khalifa, Hend S. .
SENSORS, 2016, 16 (05)
[8]  
Alluhaibi O., 2017, P IEEE 85 VEHICULAR, P1
[9]   ZigBee-based Sensor Network for Indoor Location and Tracking Applications [J].
Alvarez, Y. ;
Las Heras, F. .
IEEE LATIN AMERICA TRANSACTIONS, 2016, 14 (07) :3208-3214
[10]   Radio SLAM: A Review on Radio-Based Simultaneous Localization and Mapping [J].
Amjad, Bisma ;
Ahmed, Qasim Zeeshan ;
Lazaridis, Pavlos I. I. ;
Hafeez, Maryam ;
Khan, Faheem A. A. ;
Zaharis, Zaharias D. D. .
IEEE ACCESS, 2023, 11 :9260-9278