Generalized higher-order semi-derivative of the perturbation maps in vector optimization

被引:1
作者
Pham, Thanh-Hung [1 ,2 ]
机构
[1] Kien Giang Univ, Fac Pedag, Chau Thanh, Kien Giang, Vietnam
[2] Kien Giang Univ, Fac Social Sci & Humanities, Chau Thanh, Kien Giang, Vietnam
关键词
Parametric vector optimization problems; Generalized mth-order contingent derivatives; Borwein proper efficient solution maps; Borwein proper efficient perturbation maps; Sensitivity analysis; EFFICIENT POINT MULTIFUNCTIONS; SENSITIVITY-ANALYSIS; VARIATIONAL SETS; FULL STABILITY; EPIDERIVATIVES;
D O I
10.1007/s13160-022-00560-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we focus on the higher-order sensitivity analysis in parametric vector optimization problems. We prove that the Borwein proper efficient solution maps/the Borwein proper efficient perturbation maps of a parametric vector optimization problem are generalized higher-order semi-differentiable under some suitable qualification conditions. Several examples are given to illustrate the obtained results.
引用
收藏
页码:929 / 963
页数:35
相关论文
共 52 条