ON A CLASS OF WEIGHTED ANISOTROPIC p-LAPLACE EQUATION WITH SINGULAR NONLINEARITY

被引:1
作者
Garain, Prashanta [1 ]
机构
[1] Uppsala Univ, Dept Math, S-75238 Uppsala, Sweden
关键词
Key words and phrases. Weighted anisotropic problem; singular nonlinearity; existence; p-admissible weights; variational method; approximation technique; DIRICHLET PROBLEM; ELLIPTIC-EQUATIONS; EIGENVALUE PROBLEM; WULFF SHAPE; MULTIPLICITY; MINIMIZERS; EXISTENCE; SOBOLEV; SETS;
D O I
10.12775/TMNA.2022.037
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a class of singular weighted anisotropic p-Laplace equations. We provide sufficient condition on the weight function that may vanish or blow up near the origin to ensure the existence of at least one weak solution in the purely singular case and at least two different weak solutions in the purturbed singular case.
引用
收藏
页码:775 / 799
页数:25
相关论文
共 42 条
[1]   Powers of Distances to Lower Dimensional Sets as Muckenhoupt Weights [J].
Aimar, H. ;
Carena, M. ;
Duran, R. ;
Toschi, M. .
ACTA MATHEMATICA HUNGARICA, 2014, 143 (01) :119-137
[2]   Convex symmetrization and applications [J].
Alvino, A ;
Ferone, V ;
Trombetti, G ;
Lions, PL .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (02) :275-293
[3]   Multiplicity of solutions for a Dirichlet problem with a strongly singular nonlinearity [J].
Arcoya, David ;
Moreno-Merida, Lourdes .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 95 :281-291
[4]  
Arcoya D, 2013, DIFFER INTEGRAL EQU, V26, P119
[5]  
Bal K, 2023, DIFFER INTEGRAL EQU, V36, P59
[6]  
Bal K, 2021, ADV DIFFERENTIAL EQU, V26, P535
[7]  
Belloni M, 2006, J EUR MATH SOC, V8, P123
[8]   Isoperimetric inequalities, Wulff shape and related questions for strongly nonlinear elliptic operators [J].
Belloni, M ;
Ferone, V ;
Kawohl, B .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2003, 54 (05) :771-783
[9]   Wulff shape characterizations in overdetermined anisotropic elliptic problems [J].
Bianchini, Chiara ;
Ciraolo, Giulio .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2018, 43 (05) :790-820
[10]   A Boundary-Value Problem for Normalized Finsler infinity-Laplacian Equations with Singular nonhomogeneous terms [J].
Biset, Tesfa ;
Mebrate, Benyam ;
Mohammed, Ahmed .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 190