Multi-modal characterization methods of solid-electrolyte interphase in silicon-graphite composite electrodes

被引:14
作者
Huey, Zoey [1 ,2 ]
Ha, Yeyoung [1 ]
Frisco, Sarah [1 ]
Norman, Andrew [1 ]
Teeter, Glenn [1 ]
Jiang, Chun-Sheng [1 ]
DeCaluwe, Steven C. [2 ]
机构
[1] Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA
[2] Colorado Sch Mines, 1500 Illinois St, Golden, CO 80401 USA
关键词
Solid electrolyte interphase; Surface characterization; Silicon electrodes; Lithium ion batteries; LITHIUM-ION-BATTERY; FLUOROETHYLENE CARBONATE; NEGATIVE ELECTRODES; ANODE; SEI; EVOLUTION; XPS; REDUCTION; CHEMISTRY; FILM;
D O I
10.1016/j.jpowsour.2023.232804
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Composite silicon-graphite (Si-Gr) anodes can improve battery energy density, due to Si's high gravimetric capacity, while mitigating mechanical degradation of the anode and solid-electrolyte interphase (SEI) caused by Si volumetric expansion. Optimizing these anodes is challenging, in part due to difficulty characterizing the SEI structure and composition. In this work, we present multi-modal characterization of the SEI on composite Si-Gr anodes to relate SEI chemical composition and structure to functional properties. Discrepancies in elemental concentrations from X-ray photoelectron spectroscopy, Auger electron spectroscopy, and energy-dispersive X-ray spectroscopy (EDS) are attributed to varying information depth and lateral resolution of the individual probes. However, by combining quantitative composition information with spatially resolved element mapping from scanning transmission electron microscopy, EDS, and electron energy loss spectroscopy, a holistic picture of the SEI emerges. We observe the bilayer SEI structure and a direct correlation between elemental Li and F, suggesting that most Li in the SEI exists as lithium fluoride (LiF). Further, LiF concentration is directly proportional to the maximum SEI resistivity, as determined by scanning spreading resistance microscopy. Lastly, there is an inverse relationship between lithium carbonate and LiF concentration in the SEI, providing insight into the detailed chemistry of SEI formation and evolution.
引用
收藏
页数:10
相关论文
共 55 条
[1]   The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling [J].
An, Seong Jin ;
Li, Jianlin ;
Daniel, Claus ;
Mohanty, Debasish ;
Nagpure, Shrikant ;
Wood, David L., III .
CARBON, 2016, 105 :52-76
[2]   The Role of Electrolyte Additives on the Interfacial Chemistry and Thermal Reactivity of Si-Anode-Based Li-Ion Battery [J].
Aupperle, Felix ;
von Aspern, Natascha ;
Berghus, Debbie ;
Weber, Felix ;
Eshetu, Gebrekidan Gebresilassie ;
Winter, Martin ;
Figgemeier, Egbert .
ACS APPLIED ENERGY MATERIALS, 2019, 2 (09) :6513-6527
[3]   A review of carbon materials and their composites with alloy metals for sodium ion battery anodes [J].
Balogun, Muhammad-Sadeeq ;
Luo, Yang ;
Qiu, Weitao ;
Liu, Peng ;
Tong, Yexiang .
CARBON, 2016, 98 :162-178
[4]   Si electrodes for li-ion batteries - A new way to look at an old problem [J].
Beattie, S. D. ;
Larcher, D. ;
Morcrette, M. ;
Simon, B. ;
Tarascon, J. -M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (02) :A158-A163
[5]   Electron transfer through solid-electrolyte-interphase layers formed on Si anodes of Li-ion batteries [J].
Benitez, L. ;
Cristancho, D. ;
Seminario, J. M. ;
de la Hoz, J. M. Martinez ;
Balbuena, P. B. .
ELECTROCHIMICA ACTA, 2014, 140 :250-257
[6]   Nanoscale Chemical Evolution of Silicon Negative Electrodes Characterized by Low-Loss STEM-EELS [J].
Boniface, Maxime ;
Quazuguel, Lucille ;
Danet, Julien ;
Guyomard, Dominique ;
Moreau, Philippe ;
Bayle-Guillemaud, Pascale .
NANO LETTERS, 2016, 16 (12) :7381-7388
[7]   Reduction Mechanism of Fluoroethylene Carbonate for Stable Solid-Electrolyte Interphase Film on Silicon Anode [J].
Chen, Xilin ;
Li, Xiaolin ;
Mei, Donghai ;
Feng, Ju ;
Hu, Mary Y. ;
Hu, Jianzhi ;
Engelhard, Mark ;
Zheng, Jianming ;
Xu, Wu ;
Xiao, Jie ;
Liu, Jun ;
Zhang, Ji-Guang .
CHEMSUSCHEM, 2014, 7 (02) :549-554
[8]  
Davis L.E., 1976, HDB AUGER ELECT SPEC
[9]  
Eyben P., Scanning Probe Microscopy, P31, DOI [10.1007/978-0-387-28668-6_3., DOI 10.1007/978-0-387-28668-6_3]
[10]  
Fard L.S., 2020, J COMPOSITES COMPOUN, V2, P138, DOI [10.29252/jcc.2.3.5, DOI 10.29252/JCC.2.3.5]