Multi-modal characterization methods of solid-electrolyte interphase in silicon-graphite composite electrodes

被引:13
作者
Huey, Zoey [1 ,2 ]
Ha, Yeyoung [1 ]
Frisco, Sarah [1 ]
Norman, Andrew [1 ]
Teeter, Glenn [1 ]
Jiang, Chun-Sheng [1 ]
DeCaluwe, Steven C. [2 ]
机构
[1] Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA
[2] Colorado Sch Mines, 1500 Illinois St, Golden, CO 80401 USA
关键词
Solid electrolyte interphase; Surface characterization; Silicon electrodes; Lithium ion batteries; LITHIUM-ION-BATTERY; FLUOROETHYLENE CARBONATE; NEGATIVE ELECTRODES; ANODE; SEI; EVOLUTION; XPS; REDUCTION; CHEMISTRY; FILM;
D O I
10.1016/j.jpowsour.2023.232804
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Composite silicon-graphite (Si-Gr) anodes can improve battery energy density, due to Si's high gravimetric capacity, while mitigating mechanical degradation of the anode and solid-electrolyte interphase (SEI) caused by Si volumetric expansion. Optimizing these anodes is challenging, in part due to difficulty characterizing the SEI structure and composition. In this work, we present multi-modal characterization of the SEI on composite Si-Gr anodes to relate SEI chemical composition and structure to functional properties. Discrepancies in elemental concentrations from X-ray photoelectron spectroscopy, Auger electron spectroscopy, and energy-dispersive X-ray spectroscopy (EDS) are attributed to varying information depth and lateral resolution of the individual probes. However, by combining quantitative composition information with spatially resolved element mapping from scanning transmission electron microscopy, EDS, and electron energy loss spectroscopy, a holistic picture of the SEI emerges. We observe the bilayer SEI structure and a direct correlation between elemental Li and F, suggesting that most Li in the SEI exists as lithium fluoride (LiF). Further, LiF concentration is directly proportional to the maximum SEI resistivity, as determined by scanning spreading resistance microscopy. Lastly, there is an inverse relationship between lithium carbonate and LiF concentration in the SEI, providing insight into the detailed chemistry of SEI formation and evolution.
引用
收藏
页数:10
相关论文
共 55 条
  • [1] The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling
    An, Seong Jin
    Li, Jianlin
    Daniel, Claus
    Mohanty, Debasish
    Nagpure, Shrikant
    Wood, David L., III
    [J]. CARBON, 2016, 105 : 52 - 76
  • [2] The Role of Electrolyte Additives on the Interfacial Chemistry and Thermal Reactivity of Si-Anode-Based Li-Ion Battery
    Aupperle, Felix
    von Aspern, Natascha
    Berghus, Debbie
    Weber, Felix
    Eshetu, Gebrekidan Gebresilassie
    Winter, Martin
    Figgemeier, Egbert
    [J]. ACS APPLIED ENERGY MATERIALS, 2019, 2 (09) : 6513 - 6527
  • [3] A review of carbon materials and their composites with alloy metals for sodium ion battery anodes
    Balogun, Muhammad-Sadeeq
    Luo, Yang
    Qiu, Weitao
    Liu, Peng
    Tong, Yexiang
    [J]. CARBON, 2016, 98 : 162 - 178
  • [4] Si electrodes for li-ion batteries - A new way to look at an old problem
    Beattie, S. D.
    Larcher, D.
    Morcrette, M.
    Simon, B.
    Tarascon, J. -M.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (02) : A158 - A163
  • [5] Electron transfer through solid-electrolyte-interphase layers formed on Si anodes of Li-ion batteries
    Benitez, L.
    Cristancho, D.
    Seminario, J. M.
    de la Hoz, J. M. Martinez
    Balbuena, P. B.
    [J]. ELECTROCHIMICA ACTA, 2014, 140 : 250 - 257
  • [6] Nanoscale Chemical Evolution of Silicon Negative Electrodes Characterized by Low-Loss STEM-EELS
    Boniface, Maxime
    Quazuguel, Lucille
    Danet, Julien
    Guyomard, Dominique
    Moreau, Philippe
    Bayle-Guillemaud, Pascale
    [J]. NANO LETTERS, 2016, 16 (12) : 7381 - 7388
  • [7] Reduction Mechanism of Fluoroethylene Carbonate for Stable Solid-Electrolyte Interphase Film on Silicon Anode
    Chen, Xilin
    Li, Xiaolin
    Mei, Donghai
    Feng, Ju
    Hu, Mary Y.
    Hu, Jianzhi
    Engelhard, Mark
    Zheng, Jianming
    Xu, Wu
    Xiao, Jie
    Liu, Jun
    Zhang, Ji-Guang
    [J]. CHEMSUSCHEM, 2014, 7 (02) : 549 - 554
  • [8] Davis L.E., 1976, HDB AUGER ELECT SPEC
  • [9] Eyben P., Scanning Probe Microscopy, P31, DOI [10.1007/978-0-387-28668-6_3., DOI 10.1007/978-0-387-28668-6_3]
  • [10] Fard L.S., 2020, J COMPOSITES COMPOUN, V2, P138