5-Azacytidine-Mediated Modulation of the Immune Microenvironment in Murine Acute Myeloid Leukemia

被引:2
作者
Ebelt, Nancy D. [1 ]
Manuel, Edwin R. [1 ]
机构
[1] Beckman Res Inst City Hope, Dept Immuno Oncol, Duarte, CA 91010 USA
基金
美国国家卫生研究院;
关键词
hematologic malignancies; acute myeloid leukemia; hypomethylating agents; 5-azacytidine; resistance; relapse; DNA METHYLATION; T-CELLS; AZACITIDINE; EXPRESSION; MOLONEY; UPDATE; FRIEND; PD-1;
D O I
10.3390/cancers15010118
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Cancer cells accumulate epigenetic modifications that allow escape from intrinsic and extrinsic surveillance mechanisms. In the case of acute myeloid leukemias (AML) and myelodysplastic syndromes, agents that disrupt chromatin structure, namely hypomethylating agents (HMAs), have shown tremendous promise as an alternate, milder treatment option for older, clinically non-fit patients. HMAs reprogram the epigenetic landscape in tumor cells through the reversal of DNA hypermethylation. Therapeutic effects resulting from these epigenetic changes are incredibly effective, sometimes resulting in complete remissions, but are frequently lost due to primary or acquired resistance. In this study, we describe syngeneic murine leukemias that are responsive to the HMA 5-azacytidine (5-Aza), as determined by augmented expression of a transduced luciferase reporter. We also found that 5-Aza treatment re-established immune-related transcript expression, suppressed leukemic burden and extended survival in leukemia-challenged mice. The effects of 5-Aza treatment were short-lived, and analysis of the immune microenvironment reveals possible mechanisms of resistance, such as simultaneous increase in immune checkpoint protein expression. This represents a model system that is highly responsive to HMAs and recapitulates major therapeutic outcomes observed in human leukemia (relapse) and may serve as a pre-clinical tool for studying acquired resistance and novel treatment combinations.
引用
收藏
页数:16
相关论文
共 49 条
[1]  
Abuelgasim Khadega A, 2020, Leuk Res Rep, V14, P100206, DOI 10.1016/j.lrr.2020.100206
[2]   Murine Models of Acute Myeloid Leukaemia [J].
Almosailleakh, Marwa ;
Schwaller, Juerg .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (02)
[3]   Luciferase Expression Allows Bioluminescence Imaging But Imposes Limitations on the Orthotopic Mouse (4T1) Model of Breast Cancer [J].
Baklaushev, V. P. ;
Kilpelainen, A. ;
Petkov, S. ;
Abakumov, M. A. ;
Grinenko, N. F. ;
Yusubalieva, G. M. ;
Latanova, A. A. ;
Gubskiy, I. L. ;
Zabozlaev, F. G. ;
Starodubova, E. S. ;
Abakumova, T. O. ;
Isaguliants, M. G. ;
Chekhonin, V. P. .
SCIENTIFIC REPORTS, 2017, 7
[4]  
Bohl SR., 2013, Blood, V122, P3756, DOI [10.1182/blood.V122.21.3756.3756, DOI 10.1182/BLOOD.V122.21.3756.3756]
[5]   Extramedullary infiltrates of AML are associated with CD56 expression, 11q23 abnormalities and inferior clinical outcome [J].
Chang, H ;
Brandwein, J ;
Yi, QL ;
Chun, K ;
Patterson, B ;
Brien, B .
LEUKEMIA RESEARCH, 2004, 28 (10) :1007-1011
[6]   Identification of a gag-encoded cytotoxic T-lymphocyte epitope from FBL-3 leukemia shared by Friend, Moloney, and Rauscher murine leukemia virus-induced tumors [J].
Chen, W ;
Qin, HL ;
Chesebro, B ;
Cheever, MA .
JOURNAL OF VIROLOGY, 1996, 70 (11) :7773-7782
[7]   Inhibiting DNA Methylation Causes an Interferon Response in Cancer via dsRNA Including Endogenous Retroviruses [J].
Chiappinelli, Katherine B. ;
Strissel, Pamela L. ;
Desrichard, Alexis ;
Li, Huili ;
Henke, Christine ;
Akman, Benjamin ;
Hein, Alexander ;
Rote, Neal S. ;
Cope, Leslie M. ;
Snyder, Alexandra ;
Makarov, Vladimir ;
Buhu, Sadna ;
Slamon, Dennis J. ;
Wolchok, Jedd D. ;
Pardoll, Drew M. ;
Beckmann, Matthias W. ;
Zahnow, Cynthia A. ;
Mergoub, Taha ;
Chan, Timothy A. ;
Baylin, Stephen B. ;
Strick, Reiner .
CELL, 2015, 162 (05) :974-986
[8]   Immune Escape of Relapsed AML Cells after Allogeneic Transplantation [J].
Christopher, M. J. ;
Petti, A. A. ;
Rettig, M. P. ;
Miller, C. A. ;
Chendamarai, E. ;
Duncavage, E. J. ;
Klco, J. M. ;
Helton, N. M. ;
O'Laughlin, M. ;
Fronick, C. C. ;
Fulton, R. S. ;
Wilson, R. K. ;
Wartman, L. D. ;
Welch, J. S. ;
Heath, S. E. ;
Baty, J. D. ;
Payton, J. E. ;
Graubert, T. A. ;
Link, D. C. ;
Walter, M. J. ;
Westervelt, P. ;
Ley, T. J. ;
DiPersio, J. F. .
NEW ENGLAND JOURNAL OF MEDICINE, 2018, 379 (24) :2330-2341
[9]   The effects of 5-azacytidine on the function and number of regulatory T cells and T-effectors in myelodysplastic syndrome [J].
Costantini, Benedetta ;
Kordasti, Shahram Y. ;
Kulasekararaj, Austin G. ;
Jiang, Jie ;
Seidl, Thomas ;
Abellan, Pilar Perez ;
Mohamedali, Azim ;
Thomas, Nicolas Shaun B. ;
Farzaneh, Farzin ;
Mufti, Ghulam J. .
HAEMATOLOGICA, 2013, 98 (08) :1196-1205
[10]   Azacitidine (AZA) with Nivolumab (Nivo), and AZA with Nivo plus Ipilimumab (Ipi) in Relapsed/Refractory Acute Myeloid Leukemia: A Non-Randomized, Prospective, Phase 2 Study [J].
Daver, Naval G. ;
Garcia-Manero, Guillermo ;
Konopleva, Marina Y. ;
Alfayez, Mansour ;
Pemmaraju, Naveen ;
Kadia, Tapan M. ;
DiNardo, Courtney D. ;
Cortes, Jorge E. ;
Ravandi, Farhad ;
Abbas, Hussein ;
Basu, Sreyashi ;
Jabbour, Elias ;
Pierce, Sherry A. ;
Estrov, Zeev E. ;
Takahashi, Koichi ;
Ning, Jing ;
Kornblau, Steven M. ;
Sasaki, Koji ;
Masarova, Lucia ;
Flores, Wilmer ;
Allison, James P. ;
Sharma, Padmanee ;
Kantarjian, Hagop M. .
BLOOD, 2019, 134