Sequential Monte Carlo samplers to fit and compare insurance loss models

被引:0
作者
Goffard, Pierre-O [1 ]
机构
[1] Univ Strasbourg, IRMA UMR 7501, Strasbourg, France
关键词
Composite model; Bayesian statistics; sequential Monte Carlo sampler; THRESHOLD; CONVERGENCE; INFERENCE;
D O I
10.1080/03461238.2022.2145577
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Insurance loss distributions are characterized by a high frequency of small claim amounts and a lower, but not insignificant, occurrence of large claim amounts. Composite models, which link two probability distributions, one for the 'body' and the other for the 'tail' of the loss distribution, have emerged in the actuarial literature to take this specificity into account. The parameters of these models summarize the distribution of the losses. One of them corresponds to the breaking point between small and large claim amounts. The composite models are usually fitted using maximum likelihood estimation. A Bayesian approach is considered in this work. Sequential Monte Carlo samplers are used to sample from the posterior distribution and compute the posterior model evidence to both fit and compare the competing models. The method is validated via a simulation study and illustrated on an insurance loss dataset.
引用
收藏
页码:765 / 787
页数:23
相关论文
共 51 条
  • [1] Modeling loss data using composite models
    Abu Bakar, S. A.
    Hamzah, N. A.
    Maghsoudi, M.
    Nadarajah, S.
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2015, 61 : 146 - 154
  • [2] Albrecher H., 2017, Reinsurance: Actuarial and statistical aspects
  • [3] [Anonymous], 2006, Extremes, DOI DOI 10.1007/S10687-006-0009-8
  • [4] Bayesian analysis of extreme events with threshold estimation
    Behrens, CN
    Lopes, HF
    Gamerman, D
    [J]. STATISTICAL MODELLING, 2004, 4 (03) : 227 - 244
  • [5] Beirlant G., 2004, STAT EXTREMES
  • [6] On parameter estimation with the Wasserstein distance
    Bernton, Espen
    Jacob, Pierre E.
    Gerber, Mathieu
    Robert, Christian P.
    [J]. INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2019, 8 (04) : 657 - 676
  • [7] Approximate Bayesian computation with the Wasserstein distance
    Bernton, Espen
    Jacob, Pierre E.
    Gerber, Mathieu
    Robert, Christian P.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2019, 81 (02) : 235 - 269
  • [8] Threshold selection and trimming in extremes
    Bladt, Martin
    Albrecher, Hansjoerg
    Beirlant, Jan
    [J]. EXTREMES, 2020, 23 (04) : 629 - 665
  • [9] A BAYESIAN APPROACH FOR ESTIMATING EXTREME QUANTILES UNDER A SEMIPARAMETRIC MIXTURE MODEL
    Cabras, Stefano
    Eugenia Castellanos, Maria
    [J]. ASTIN BULLETIN, 2011, 41 (01): : 87 - 106
  • [10] Caeiro F., 2015, EXTREME VALUE MODELI, P69, DOI DOI 10.1201/B19721-5