Hybrid optimized temporal convolutional networks with long short-term memory for heart disease prediction with deep features

被引:1
|
作者
Balamurugan, M. [1 ]
Meera, S. [2 ,3 ]
机构
[1] Vels Inst Sci Technol & Adv Studies VISTAS, Dept Comp Sci & Engn, Chennai, India
[2] Vels Inst Sci Technol & Adv Studies VISTAS, Chennai, Tamil Nadu, India
[3] Vels Inst Sci Technol & Adv Studies VISTAS, Chennai 600117, Tamil Nadu, India
关键词
Heart disease prediction; deep features; Enhanced Forensic-Based Investigation algorithm; hybrid optimized deep classifier; long short-term memory; temporal convolutional networks; LEVY FLIGHT; ALGORITHM; SYSTEM; MODEL; IDENTIFICATION;
D O I
10.1080/10255842.2024.2310075
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A heart attack is intended as top prevalent among all ruinous ailments. Day by day, the number of affected people count is increasing globally. The medical field is struggling to detect heart disease in the initial step. Early prediction can help patients to save their life. Thus, this paper implements a novel heart disease prediction model with the help of a hybrid deep learning strategy. The developed framework consists of various steps like (i) Data collection, (ii) Deep feature extraction, and (iii) Disease prediction. Initially, the standard medical data from various patients are acquired from the clinical standard datasets. Here, a One-Dimensional Convolutional Neural Network (1DCNN) is utilized for extracting the deep features from the acquired medical data to minimize the number of redundant data from the gathered large-scale data. The acquired deep features are directly fed to the Hybrid Optimized Deep Classifier (HODC) with the integration of Temporal Convolutional Networks (TCN) with Long Short-Term Memory (LSTM), where the parameters in both classifiers are optimized using the newly suggested Enhanced Forensic-Based Investigation (EFBI) inspired meta-optimization algorithm. Throughout the result analysis, the accuracy and precision rate of the offered approach is 98.67% and 99.48%. The evaluation outcomes show that the recommended system outperforms the extant systems in terms of performance metrics examination.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] A groundwater level spatiotemporal prediction model based on graph convolutional networks with a long short-term memory
    Wang, Lifang
    Jiang, Zhengwen
    Song, Lei
    Yu, Xi
    Yuan, Shujun
    Zhang, Baoyi
    JOURNAL OF HYDROINFORMATICS, 2024, 26 (11) : 2962 - 2979
  • [22] A hybrid convolutional neural network with long short-term memory for statistical arbitrage
    Eggebrecht, P.
    Luetkebohmert, E.
    QUANTITATIVE FINANCE, 2023, 23 (04) : 595 - 613
  • [23] Antarctic sea ice prediction with A convolutional long short-term memory network
    Dong, Xiaoran
    Yang, Qinghua
    Nie, Yafei
    Zampieri, Lorenzo
    Wang, Jiuke
    Liu, Jiping
    Chen, Dake
    OCEAN MODELLING, 2024, 190
  • [24] Dynamical prediction of two meteorological factors using the deep neural network and the long short-term memory (ΙΙ)
    Shin, Ki-Hong
    Jung, Jae-Won
    Chang, Ki-Ho
    Kim, Kyungsik
    Jung, Woon-Seon
    Lee, Dong-In
    You, Cheol-Hwan
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2022, 80 (12) : 1081 - 1097
  • [25] NEWLSTM: An Optimized Long Short-Term Memory Language Model for Sequence Prediction
    Wang, Qing
    Peng, Rong-Qun
    Wang, Jia-Qiang
    Li, Zhi
    Qu, Han-Bing
    IEEE ACCESS, 2020, 8 : 65395 - 65401
  • [26] Long Short-Term Memory and Convolutional Neural Networks for Active Noise Control
    Park, Samuel
    Patterson, Eric
    Baum, Carl
    2019 5TH INTERNATIONAL CONFERENCE ON FRONTIERS OF SIGNAL PROCESSING (ICFSP 2019), 2019, : 121 - 125
  • [27] Genetic Algorithm-Optimized Long Short-Term Memory Network for Stock Market Prediction
    Chung, Hyejung
    Shin, Kyung-shik
    SUSTAINABILITY, 2018, 10 (10)
  • [28] Short-term wind power prediction based on improved sparrow search algorithm optimized long short-term memory with peephole connections
    Tang, Fei
    WIND ENGINEERING, 2025, 49 (01) : 71 - 90
  • [29] Optimized Deep Stacked Long Short-Term Memory Network for Long-Term Load Forecasting
    Farrag, Tamer Ahmed
    Elattar, Ehab E.
    IEEE ACCESS, 2021, 9 : 68511 - 68522
  • [30] Ionospheric TEC prediction using Long Short-Term Memory deep learning network
    Wen, Zhichao
    Li, Shuhui
    Li, Lihua
    Wu, Bowen
    Fu, Jianqiang
    ASTROPHYSICS AND SPACE SCIENCE, 2021, 366 (01)