Exploration of Interpretability Techniques for Deep COVID-19 Classification Using Chest X-ray Images

被引:1
|
作者
Chatterjee, Soumick [1 ,2 ,3 ]
Saad, Fatima [4 ,5 ]
Sarasaen, Chompunuch [4 ,5 ,6 ]
Ghosh, Suhita [2 ,7 ]
Krug, Valerie [2 ,7 ]
Khatun, Rupali [8 ,9 ]
Mishra, Rahul [10 ]
Desai, Nirja [11 ]
Radeva, Petia [8 ,12 ]
Rose, Georg [4 ,5 ,13 ]
Stober, Sebastian [2 ,7 ]
Speck, Oliver [5 ,6 ,13 ,14 ]
Nuernberger, Andreas [1 ,2 ,13 ]
机构
[1] Otto von Guericke Univ, Data & Knowledge Engn Grp, D-39106 Magdeburg, Germany
[2] Otto von Guericke Univ, Fac Comp Sci, D-39106 Magdeburg, Germany
[3] Human Technopole, Genom Res Ctr, I-20157 Milan, Italy
[4] Otto von Guericke Univ, Inst Med Engn, D-39106 Magdeburg, Germany
[5] Otto von Guericke Univ, Res Campus STIMULATE, D-39106 Magdeburg, Germany
[6] Otto von Guericke Univ, Biomed Magnet Resonance, D-39106 Magdeburg, Germany
[7] Otto von Guericke Univ, Artificial Intelligence Lab, D-39106 Magdeburg, Germany
[8] Univ Barcelona, Dept Math & Comp Sci, Barcelona 08028, Spain
[9] Univ Klinikum Erlangen, Dept Radiat Oncol, Translat Radiobiol, D-91054 Erlangen, Germany
[10] Apollo Hosp, Bilaspur 495006, India
[11] HCG Canc Ctr, Vadodara 390012, India
[12] Comp Vis Ctr, Cerdanyola Del Valles 08193, Spain
[13] Ctr Behav Brain Sci, D-39106 Magdeburg, Germany
[14] German Ctr Neurodegenerat Dis, D-39106 Magdeburg, Germany
关键词
COVID-19; pneumonia; chest X-ray; multilabel image classification; deep learning; model ensemble; interpretability analysis; CORONAVIRUS; SUPPORT; CT;
D O I
10.3390/jimaging10020045
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
The outbreak of COVID-19 has shocked the entire world with its fairly rapid spread, and has challenged different sectors. One of the most effective ways to limit its spread is the early and accurate diagnosing of infected patients. Medical imaging, such as X-ray and computed tomography (CT), combined with the potential of artificial intelligence (AI), plays an essential role in supporting medical personnel in the diagnosis process. Thus, in this article, five different deep learning models (ResNet18, ResNet34, InceptionV3, InceptionResNetV2, and DenseNet161) and their ensemble, using majority voting, have been used to classify COVID-19, pneumoni AE and healthy subjects using chest X-ray images. Multilabel classification was performed to predict multiple pathologies for each patient, if present. Firstly, the interpretability of each of the networks was thoroughly studied using local interpretability methods-occlusion, saliency, input X gradient, guided backpropagation, integrated gradients, and DeepLIFT-and using a global technique-neuron activation profiles. The mean micro F1 score of the models for COVID-19 classifications ranged from 0.66 to 0.875, and was 0.89 for the ensemble of the network models. The qualitative results showed that the ResNets were the most interpretable models. This research demonstrates the importance of using interpretability methods to compare different models before making a decision regarding the best performing model.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Classification of COVID-19 from chest x-ray images using deep features and correlation coefficient
    Rahul Kumar
    Ridhi Arora
    Vipul Bansal
    Vinodh J Sahayasheela
    Himanshu Buckchash
    Javed Imran
    Narayanan Narayanan
    Ganesh N Pandian
    Balasubramanian Raman
    Multimedia Tools and Applications, 2022, 81 : 27631 - 27655
  • [22] CoroDet: A deep learning based classification for COVID-19 detection using chest X-ray images
    Hussain, Emtiaz
    Hasan, Mahmudul
    Rahman, Md Anisur
    Lee, Ickjai
    Tamanna, Tasmi
    Parvez, Mohammad Zavid
    CHAOS SOLITONS & FRACTALS, 2021, 142
  • [23] Classification of COVID-19 from chest x-ray images using deep features and correlation coefficient
    Kumar, Rahul
    Arora, Ridhi
    Bansal, Vipul
    Sahayasheela, Vinodh J.
    Buckchash, Himanshu
    Imran, Javed
    Narayanan, Narayanan
    Pandian, Ganesh N.
    Raman, Balasubramanian
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (19) : 27631 - 27655
  • [24] Covid-19 Detection Based on Chest X-Ray Images Using DCT Compression and NN
    Taher, Fatma
    Haweel, Reem T.
    Al Bastaki, Usama Mohammad Hassan
    Abdelwahed, Eman
    Rehman, Tariq
    Haweel, Tarek I.
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS AND TECHNIQUES (IST 2022), 2022,
  • [25] Detection of COVID-19 in Chest X-ray Images: A Big Data Enabled Deep Learning Approach
    Awan, Mazhar Javed
    Bilal, Muhammad Haseeb
    Yasin, Awais
    Nobanee, Haitham
    Khan, Nabeel Sabir
    Zain, Azlan Mohd
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (19)
  • [26] Diagnosis of COVID-19 from X-ray images using deep learning techniques
    Alghamdi, Maha Mesfer Meshref
    Dahab, Mohammed Yehia Hassan
    COGENT ENGINEERING, 2022, 9 (01):
  • [27] Deep Learning for Reliable Classification of COVID-19, MERS, and SARS from Chest X-ray Images
    Tahir, Anas M.
    Qiblawey, Yazan
    Khandakar, Amith
    Rahman, Tawsifur
    Khurshid, Uzair
    Musharavati, Farayi
    Islam, M. T.
    Kiranyaz, Serkan
    Al-Maadeed, Somaya
    Chowdhury, Muhammad E. H.
    COGNITIVE COMPUTATION, 2022, 14 (05) : 1752 - 1772
  • [28] A dataset of COVID-19 x-ray chest images
    Fraiwan, Mohammad
    Khasawneh, Natheer
    Khassawneh, Basheer
    Ibnian, Ali
    DATA IN BRIEF, 2023, 47
  • [29] An Efficient Deep Learning Model to Detect COVID-19 Using Chest X-ray Images
    Chakraborty, Somenath
    Murali, Beddhu
    Mitra, Amal K.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (04)
  • [30] FocusCovid: automated COVID-19 detection using deep learning with chest X-ray images
    Agrawal, Tarun
    Choudhary, Prakash
    EVOLVING SYSTEMS, 2022, 13 (04) : 519 - 533