EXISTENCE OF RENORMALIZED SOLUTIONS FOR SOME DEGENERATE AND NON-COERCIVE ELLIPTIC EQUATIONS

被引:1
作者
Akdim, Youssef [1 ]
Belayachi, Mohammed [1 ]
Hjiaj, Hassane [2 ]
机构
[1] Univ Sidi Mohamed Ben Abdellah, Fac Sci Dhar el Mahraz, Dept Math, Lab LAMA, BP 1796, Fes, Morocco
[2] Univ Abdelmalek Essaadi, Dept Math, Fac Sci Tetouan, Quartier Mhaneche II,Ave Palestine,BP 2121, Tetouan 93000, Morocco
来源
MATHEMATICA BOHEMICA | 2023年 / 148卷 / 02期
关键词
renormalized solution; nonlinear elliptic equation; non-coercive problem; NATURAL GROWTH TERMS;
D O I
10.21136/MB.2022.0061-21
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to the study of some nonlinear degenerated elliptic equations, whose prototype is given by - div(b(|u|)|.del u|(p-2)del u) + d(|u|)|del u|(p) = f - div(c(x)|u|(alpha) in Omega, u = 0 where Omega is a bounded open set of R-N (N > 2) with 1 < p < N and f.epsilon L-1(Omega), under some growth conditions on the function b(center dot) and d(center dot), where c(center dot) is assumed to be in LN/(p-1)(Omega). We show the existence of renormalized solutions for this non-coercive elliptic equation, also, some regularity results will be concluded.
引用
收藏
页码:255 / 282
页数:28
相关论文
共 23 条
  • [1] Alvino A., 1998, ATTI SEM MAT FIS U S, V46, P381
  • [2] Existence results for nonlinear elliptic equations with degenerate coercivity
    Angelo Alvino
    Lucio Boccardo
    Vincenzo Ferone
    Luigi Orsina
    Guido Trombetti
    [J]. Annali di Matematica Pura ed Applicata, 2003, 182 (1) : 53 - 79
  • [3] Ben Cheikh Ali M., 2006, ADV MATH SCI APPL, V16, P275
  • [4] Benilan P., 1995, ANN SCUOLA NORM-SCI, V22, P241
  • [5] BENSOUSSAN A, 1988, ANN I H POINCARE-AN, V5, P347
  • [6] INFINITE VALUED SOLUTIONS OF NON-UNIFORMLY ELLIPTIC PROBLEMS
    Blanchard, Dominique
    Guibe, Olivier
    [J]. ANALYSIS AND APPLICATIONS, 2004, 2 (03) : 227 - 246
  • [7] STRONGLY NONLINEAR ELLIPTIC-EQUATIONS HAVING NATURAL GROWTH TERMS AND L(1) DATA
    BOCCARDO, L
    GALLOUET, T
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 19 (06) : 573 - 579
  • [8] Boccardo L., 1998, Atti Semin Mat Fis Univ Modena Reggio Emilia, V46, P51
  • [9] Croce, 2011, REND MAT, V27, P299, DOI DOI 10.48550/ARXIV.1005.0203
  • [10] de Leon S. Segura, 2003, ADV DIFF EQUATIONS, V8, P1377