Cooperative Task Offloading for Mobile Edge Computing Based on Multi-Agent Deep Reinforcement Learning

被引:19
|
作者
Yang, Jian [1 ]
Yuan, Qifeng [1 ]
Chen, Shuangwu [1 ,2 ]
He, Huasen [1 ]
Jiang, Xiaofeng [1 ]
Tan, Xiaobin [1 ]
机构
[1] Univ Sci & Technol China, Sch Informat Sci & Technol, Hefei 230026, Peoples R China
[2] Hefei Comprehens Natl Sci Ctr, Inst Artificial Intelligence, Hefei 230027, Anhui, Peoples R China
来源
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT | 2023年 / 20卷 / 03期
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Mobile edge computing; multi-agent system; task offloading; cooperative edge computing; deep reinforcement learning; RESOURCE-ALLOCATION;
D O I
10.1109/TNSM.2023.3240415
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Driven by the prevalence of the computation-intensive and delay-intensive mobile applications, Mobile Edge Computing (MEC) is emerging as a promising solution. Traditional task offloading methods usually rely on centralized decision making, which inevitably involves a high computational complexity and a large state space. However, the MEC is a typical distributed system, where the edge servers are geographically separated, and independently perform the computing tasks. This fact inspires us to conceive a distributed cooperative task offloading system, where each edge server makes its own decision on how to allocate local computing resources and how to migrate tasks among the edge servers. To characterize diverse task requirements, we divide the arrival tasks into different priorities according to the tolerance time, which enables to dynamically schedule the local computing resources for reducing the task timeout. In order to coordinate the independent decision makings of geographically separate edge servers, we propose a priority driven cooperative task offloading algorithm based on multi-agent deep reinforcement learning, where the decision making of each edge server not only depends on its own state but also on the shared global information. We further develop a Variational Recurrent Neural Network (VRNN) based global state sharing model which significantly reduces the communication overhead among edge servers. The performance evaluation conducted on a movement trajectories dataset of mobile devices verifies that the proposed algorithm can reduce the task consumption time and improve the edge computing resources utilization.
引用
收藏
页码:3205 / 3219
页数:15
相关论文
共 50 条
  • [11] Collaborative Task Offloading Optimization for Satellite Mobile Edge Computing Using Multi-Agent Deep Reinforcement Learning
    Zhang, Hangyu
    Zhao, Hongbo
    Liu, Rongke
    Kaushik, Aryan
    Gao, Xiangqiang
    Xu, Shenzhan
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (10) : 15483 - 15498
  • [12] Multi-agent deep reinforcement learning for computation offloading in cooperative edge network
    Wu, Pengju
    Guan, Yepeng
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2024, : 567 - 591
  • [13] A multi-UAV assisted task offloading and path optimization for mobile edge computing via multi-agent deep reinforcement learning
    Ju, Tao
    Li, Linjuan
    Liu, Shuai
    Zhang, Yu
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2024, 229
  • [14] Research on Task Offloading Based on Deep Reinforcement Learning in Mobile Edge Computing
    Lu H.
    Gu C.
    Luo F.
    Ding W.
    Yang T.
    Zheng S.
    Gu, Chunhua (chgu@ecust.edu.cn), 1600, Science Press (57): : 1539 - 1554
  • [15] Task Offloading Optimization in Mobile Edge Computing based on Deep Reinforcement Learning
    Silva, Carlos
    Magaia, Naercio
    Grilo, Antonio
    PROCEEDINGS OF THE INT'L ACM CONFERENCE ON MODELING, ANALYSIS AND SIMULATION OF WIRELESS AND MOBILE SYSTEMS, MSWIM 2023, 2023, : 109 - 118
  • [16] Multi-Agent Deep Reinforcement Learning-Based Partial Task Offloading and Resource Allocation in Edge Computing Environment
    Ke, Hongchang
    Wang, Hui
    Sun, Hongbin
    ELECTRONICS, 2022, 11 (15)
  • [17] Hierarchical Task Offloading for Vehicular Fog Computing Based on Multi-Agent Deep Reinforcement Learning
    Hou, Yukai
    Wei, Zhiwei
    Zhang, Rongqing
    Cheng, Xiang
    Yang, Liuqing
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (04) : 3074 - 3085
  • [18] Distributed Task Offloading based on Multi-Agent Deep Reinforcement Learning
    Hu, Shucheng
    Ren, Tao
    Niu, Jianwei
    Hu, Zheyuan
    Xing, Guoliang
    2021 17TH INTERNATIONAL CONFERENCE ON MOBILITY, SENSING AND NETWORKING (MSN 2021), 2021, : 575 - 583
  • [19] An intelligent task offloading method based on multi-agent deep reinforcement learning in ultra-dense heterogeneous network with mobile edge computing
    Pang, Shanchen
    Wang, Teng
    Gui, Haiyuan
    He, Xiao
    Hou, Lili
    COMPUTER NETWORKS, 2024, 250
  • [20] Multi-agent Reinforcement Learning for Task Allocation in Cooperative Edge Cloud Computing
    Ding, Shiyao
    SERVICE-ORIENTED COMPUTING, ICSOC 2021 WORKSHOPS, 2022, 13236 : 283 - 297