Cooperative Task Offloading for Mobile Edge Computing Based on Multi-Agent Deep Reinforcement Learning

被引:19
|
作者
Yang, Jian [1 ]
Yuan, Qifeng [1 ]
Chen, Shuangwu [1 ,2 ]
He, Huasen [1 ]
Jiang, Xiaofeng [1 ]
Tan, Xiaobin [1 ]
机构
[1] Univ Sci & Technol China, Sch Informat Sci & Technol, Hefei 230026, Peoples R China
[2] Hefei Comprehens Natl Sci Ctr, Inst Artificial Intelligence, Hefei 230027, Anhui, Peoples R China
来源
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT | 2023年 / 20卷 / 03期
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Mobile edge computing; multi-agent system; task offloading; cooperative edge computing; deep reinforcement learning; RESOURCE-ALLOCATION;
D O I
10.1109/TNSM.2023.3240415
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Driven by the prevalence of the computation-intensive and delay-intensive mobile applications, Mobile Edge Computing (MEC) is emerging as a promising solution. Traditional task offloading methods usually rely on centralized decision making, which inevitably involves a high computational complexity and a large state space. However, the MEC is a typical distributed system, where the edge servers are geographically separated, and independently perform the computing tasks. This fact inspires us to conceive a distributed cooperative task offloading system, where each edge server makes its own decision on how to allocate local computing resources and how to migrate tasks among the edge servers. To characterize diverse task requirements, we divide the arrival tasks into different priorities according to the tolerance time, which enables to dynamically schedule the local computing resources for reducing the task timeout. In order to coordinate the independent decision makings of geographically separate edge servers, we propose a priority driven cooperative task offloading algorithm based on multi-agent deep reinforcement learning, where the decision making of each edge server not only depends on its own state but also on the shared global information. We further develop a Variational Recurrent Neural Network (VRNN) based global state sharing model which significantly reduces the communication overhead among edge servers. The performance evaluation conducted on a movement trajectories dataset of mobile devices verifies that the proposed algorithm can reduce the task consumption time and improve the edge computing resources utilization.
引用
收藏
页码:3205 / 3219
页数:15
相关论文
共 50 条
  • [1] Optimization of Task Offloading Strategy for Mobile Edge Computing Based on Multi-Agent Deep Reinforcement Learning
    Lu, Haifeng
    Gu, Chunhua
    Luo, Fei
    Ding, Weichao
    Zheng, Shuai
    Shen, Yifan
    IEEE ACCESS, 2020, 8 : 202573 - 202584
  • [2] Multi-agent deep reinforcement learning for collaborative task offloading in mobile edge computing networks
    Chen, Minxuan
    Guo, Aihuang
    Song, Chunlin
    DIGITAL SIGNAL PROCESSING, 2023, 140
  • [3] Multi-Agent Reinforcement Learning for Cooperative Task Offloading in Distributed Edge Cloud Computing
    Ding, Shiyao
    Lin, Donghui
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2022, E105D (05) : 936 - 945
  • [4] Multi-Agent Deep Reinforcement Learning for Task Offloading in UAV-Assisted Mobile Edge Computing
    Zhao, Nan
    Ye, Zhiyang
    Pei, Yiyang
    Liang, Ying-Chang
    Niyato, Dusit
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (09) : 6949 - 6960
  • [5] Vehicle Edge Computing Task Offloading Strategy Based on Multi-Agent Deep Reinforcement Learning
    Bo, Jianxiong
    Zhao, Xu
    JOURNAL OF GRID COMPUTING, 2025, 23 (02)
  • [6] Cooperative Task Offloading and Block Mining in Blockchain-Based Edge Computing With Multi-Agent Deep Reinforcement Learning
    Nguyen, Dinh C.
    Ding, Ming
    Pathirana, Pubudu N.
    Seneviratne, Aruna
    Li, Jun
    Poor, H. Vincent
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2023, 22 (04) : 2021 - 2037
  • [7] Multi-Agent Deep Reinforcement Learning for Cooperative Offloading in Cloud-Edge Computing
    Suzuki, Akito
    Kobayashi, Masahiro
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 3660 - 3666
  • [8] Heterogeneous multi-agent deep reinforcement learning based low carbon emission task offloading in mobile edge computing
    Zhou, Xiongjie
    Guan, Xin
    Sun, Di
    Zhang, Xiaoguang
    Zhang, Zhaogong
    Ohtsuki, Tomoaki
    COMPUTER COMMUNICATIONS, 2025, 234
  • [9] Multi-Agent Deep Reinforcement Learning for Efficient Computation Offloading in Mobile Edge Computing
    Jiao, Tianzhe
    Feng, Xiaoyue
    Guo, Chaopeng
    Wang, Dongqi
    Song, Jie
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 76 (03): : 3585 - 3603
  • [10] A Task Offloading and Resource Allocation Strategy Based on Multi-Agent Reinforcement Learning in Mobile Edge Computing
    Jiang, Guiwen
    Huang, Rongxi
    Bao, Zhiming
    Wang, Gaocai
    FUTURE INTERNET, 2024, 16 (09)