Mechanical fault diagnosis based on deep transfer learning: a review

被引:33
|
作者
Yang, Dalian [1 ,2 ]
Zhang, Wenbin [1 ]
Jiang, Yongzheng [1 ]
机构
[1] Hunan Univ Sci & Technol, Hunan Prov Key Lab Hlth Maintenance Mech Equipment, Xiangtan 411201, Peoples R China
[2] Zhuzhou Natl Innovat Railway Technol Co Ltd, Hunan Engn Technol ResearchCenter Intelligent Sens, Zhuzhou 412001, Peoples R China
关键词
fault diagnosis; deep learning; transfer learning; review; DOMAIN;
D O I
10.1088/1361-6501/ace7e6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Mechanical fault diagnosis is an important method to accurately identify the health condition of mechanical equipment and ensure its safe operation. With the advent of the era of 'big data', it is an inevitable trend to choose deep learning for mechanical fault diagnosis. At the same time, to improve the generalization ability of deep learning applications in different scenarios of fault diagnosis, mechanical diagnosis based on transfer learning has also been proposed and become an important branch in the field of mechanical fault diagnosis. This paper introduces the principle of transfer learning, summarizes the research and application of transfer learning in the field of fault diagnosis, discusses the shortcomings of transfer learning in the field of fault diagnosis, and discusses the future research direction of transfer learning in the field of fault diagnosis.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Fault Diagnosis of Electro-mechanical Actuator Based on Deep Learning Network
    Yang, Ning
    Shen, Jingshi
    Jia, Yun
    Zhang, Jiande
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 4002 - 4006
  • [22] Mechanical fault diagnosis using deep contrastive transfer learning under variable working conditions
    Su H.
    Yang X.
    Xiang L.
    Hu A.-J.
    Li X.-Z.
    Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2023, 36 (03): : 845 - 853
  • [23] A method of fault diagnosis for rotary equipment based on deep learning
    Zhang, Cheng
    Xu, Liqing
    Li, Xingwang
    Wang, Huiyun
    2018 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-CHONGQING 2018), 2018, : 958 - 962
  • [24] Fine-grained transfer learning based on deep feature decomposition for rotating equipment fault diagnosis
    Dong, Jingchuan
    Su, Depeng
    Gao, Yubo
    Wu, Xiaoxin
    Jiang, Hongyu
    Chen, Tao
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (06)
  • [25] A Bearing Fault Diagnosis Method Based on Ll Regularization Transfer Learning and LSTM Deep Learning
    Zhu, Dajie
    Song, Xudong
    Yang, Jie
    Cong, Yuyang
    Wang, Lijuan
    2021 IEEE INTERNATIONAL CONFERENCE ON INFORMATION COMMUNICATION AND SOFTWARE ENGINEERING (ICICSE 2021), 2021, : 308 - 312
  • [26] A Novel Mechanical Fault Diagnosis Based on Transfer Learning with Probability Confidence Convolutional Neural Network Model
    Lin, Hsiao-Mei
    Lin, Ching-Yuan
    Wang, Chun-Hung
    Tsai, Ming-Jong
    APPLIED SCIENCES-BASEL, 2022, 12 (19):
  • [27] Fault Diagnosis of Rolling Bearings Using Deep Transfer Learning and Adaptive Weighting
    Jia F.
    Li S.
    Shen J.
    Ma J.
    Li N.
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2022, 56 (08): : 1 - 10
  • [28] Deep learning-based fault diagnosis of planetary gearbox: A systematic review
    Ahmad, Hassaan
    Cheng, Wei
    Xing, Ji
    Wang, Wentao
    Du, Shuhong
    Li, Linying
    Zhang, Rongyong
    Chen, Xuefeng
    Lu, Jinqi
    JOURNAL OF MANUFACTURING SYSTEMS, 2024, 77 : 730 - 745
  • [29] Deep transfer learning with limited data for machinery fault diagnosis
    Han, Te
    Liu, Chao
    Wu, Rui
    Jiang, Dongxiang
    APPLIED SOFT COMPUTING, 2021, 103
  • [30] Deep Contrastive Transfer Learning for Rotating Machinery Fault Diagnosis
    Zhu, Peng
    Ma, Sai
    Han, Qinkai
    Chu, Fulei
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74