Significantly improved energy-storage performance of NaNbO3 lead-free ceramics with Ca0.7Bi 0.2TiO3 addition

被引:15
作者
Liang, Cen [1 ]
Wang, Changyuan [1 ]
Zhao, Hanyu [1 ]
Cao, Wenjun [1 ]
Li, Feng [2 ]
Wang, Chunchang [1 ]
机构
[1] Anhui Univ, Sch Mat Sci & Engn, Lab Dielect Funct Mat, Hefei 230601, Peoples R China
[2] Anhui Univ, Inst Phys Sci & Informat Technol, Informat Mat & Intelligent Sensing Lab Anhui Prov, Key Lab Struct & Funct Regulat Hybrid Mat,Minist E, Hefei 230601, Peoples R China
基金
中国国家自然科学基金;
关键词
Lead-free; NaNbO3; ceramics; Phase transition; Energy storage; RELAXOR ANTIFERROELECTRIC CERAMICS; DENSITY; STABILITY;
D O I
10.1016/j.jallcom.2023.170962
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Dielectric energy-storage capacitors play a momentous role in pulsed systems due to their ultrahigh power density (PD), but the low energy-storage density strongly limits their application. Herein, linear dielectric material of Bi0.2Ca0.7TiO3 is added into NaNbO3 matrix to enhance relaxor behavior, improve polarization, and boost breakdown strength. The (1-x)NaNbO3-xBi0.2Ca0.7TiO3 (NN-xBCT) lead-free energy storage ceramics were designed and prepared by solid-state reaction method. A large recoverable energy-storage density (Wrec) of 4.43 J & BULL;cm-3 , a high efficiency (& eta;) of 79% at 360 kV & BULL;cm-1, a high PD of 184 MW & BULL;cm-3 and the large WD of 4.3 J & BULL;cm-3. The good temperature/frequency/fatigue stability over the range of 25-120 celcius/ 1-200 Hz/1-1000 0 cycles were achieved simultaneously in the NN-0.30BCT ceramic. Our results indicate that the NN-30BCT ceramic holds tremendous promise for energy storage applications. & COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 46 条
[1]   Enhanced dielectric relaxation and low-electric-field energy storage properties of NaNbO3 ceramics prepared by co-doping MgO and BiYbO3 [J].
Bai, Xue ;
Fan, Tao ;
Chen, Gang ;
Wang, Jie ;
Ji, Cong ;
Chen, Chao ;
Zhang, Zixuan ;
Cai, Wei ;
Gao, Rongli ;
Fu, Chunlin .
CERAMICS INTERNATIONAL, 2022, 48 (22) :33861-33870
[2]   Ferroelectric-Relaxor Crossover and Energy Storage Properties in Sr2NaNb5O15-Based Tungsten Bronze Ceramics [J].
Cao, Lei ;
Yuan, Ying ;
Meng, Xiangjun ;
Li, Enzhu ;
Tang, Bin .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (07) :9318-9329
[3]  
Cao W., 2023, COMPOS PART B-ENG, P255
[4]   Interfacial Polarization Restriction for Ultrahigh Energy-Storage Density in Lead-Free Ceramics [J].
Cao, Wenjun ;
Lin, Renju ;
Hou, Xu ;
Li, Li ;
Li, Feng ;
Bo, Defu ;
Ge, Binghui ;
Song, Dongsheng ;
Zhang, Jian ;
Cheng, Zhenxiang ;
Wang, Chunchang .
ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (29)
[5]   Adjusting the Energy-Storage Characteristics of 0.95NaNbO3-0.05Bi(Mg0.5Sn0.5)O3 Ceramics by Doping Linear Perovskite Materials [J].
Chen, Hongyun ;
Wang, Xiang ;
Dong, Xiaoyan ;
Pan, Yue ;
Wang, Jiaming ;
Deng, Lian ;
Dong, Qingpeng ;
Zhang, Hailin ;
Zhou, Huanfu ;
Chen, Xiuli .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (22) :25609-25619
[6]   Excellent energy storage properties and stability of NaNbO3-Bi(Mg0.5Ta0.5)O3 ceramics by introducing (Bi0.5Na0.5)0.7Sr0.3TiO3 [J].
Chen, Hongyun ;
Shi, Junpeng ;
Chen, Xiuli ;
Sun, Congcong ;
Pang, Feihong ;
Dong, Xiaoyan ;
Zhang, Hailin ;
Zhou, Huanfu .
JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (08) :4789-4799
[7]   Achieving ultrahigh energy storage density in NaNbO3-Bi(Ni0.5Zr0.5)O3 solid solution by enhancing the breakdown electric field [J].
Chen, Hongyun ;
Chen, Xiuli ;
Shi, Junpeng ;
Sun, Congcong ;
Dong, Xiaoyan ;
Pang, Feihong ;
Zhou, Huanfu .
CERAMICS INTERNATIONAL, 2020, 46 (18) :28407-28413
[8]   Giant energy-storage density with ultrahigh efficiency in lead-free relaxors via high-entropy design [J].
Chen, Liang ;
Deng, Shiqing ;
Liu, Hui ;
Wu, Jie ;
Qi, He ;
Chen, Jun .
NATURE COMMUNICATIONS, 2022, 13 (01)
[9]   Outstanding energy-storage and charge-discharge performances in Na0.5Bi0.5TiO3 lead-free ceramics via linear additive of Ca0.85Bi0.1TiO3 [J].
Chen, Pengfei ;
Cao, Wenjun ;
Li, Tianyu ;
Zhao, Bing ;
Zheng, Jun ;
Wang, Chunchang .
CHEMICAL ENGINEERING JOURNAL, 2022, 435
[10]  
Chen X., 2020, APPL PHYS A-MATER, V126, P2