Subclasses of bi-univalent functions subordinate to gegenbauer polynomials

被引:3
作者
Amourah, Ala [1 ]
Salleh, Zabidin [2 ]
Frasin, B. A. [3 ]
Khan, Muhammad Ghaffar [4 ]
Ahmad, Bakhtiar [5 ]
机构
[1] Irbid Natl Univ, Fac Sci & Technol, Dept Math, Irbid, Jordan
[2] Univ Malaysia Terengganu, Fac Ocean Engn Technol & Informat, Dept Math, Kuala Nerus 21030, Terenggunu, Malaysia
[3] Al Al Bayt Univ, Fac Sci, Dept Math, Mafraq, Jordan
[4] Kohat Univ Sci & Technol, Kohat, Pakistan
[5] Govt Degree Coll Mardan, Mardan 23200, Pakistan
关键词
Gegenbauer polynomials; Bi-univalent functions; Analytic functions; Fekete-Szego problem; COEFFICIENT;
D O I
10.1007/s13370-023-01082-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we introduce three new classes of bi-univalent functions defined by means of Gegenbauer polynomials. For functions in each of these three bi-univalent function classes, we have derived the estimates of the Taylor-Maclaurin coefficients |a(2)| and |a(3)| and Fekete-Szego functional problems for functions belonging to these new subclasses. A number of new results are shown to follow upon specializing the parameters involved in our main results.
引用
收藏
页数:14
相关论文
共 41 条
  • [11] Fekete-Szego Inequality for Analytic and Biunivalent Functions Subordinate to Gegenbauer Polynomials
    Amourah, Ala
    Frasin, Basem Aref
    Abdeljawad, Thabet
    [J]. JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [12] Amourah A, 2021, AFR MAT, V32, P1059, DOI 10.1007/s13370-021-00881-x
  • [13] Babalola K.O., 2013, J. Class. Anal, V3, P137, DOI [10.7153/jca-03-12, DOI 10.7153/JCA-03-12]
  • [14] Bateman H., 1953, HIGHER TRANSCENDENTA
  • [15] Brannan D.A., 1980, ASPECTS CONT COMPLEX
  • [16] Bulut S., 2017, J FRACT CALC APPL, V8, P32
  • [17] Bulut S, 2017, J CLASS ANAL, V11, P83, DOI DOI 10.7153/JCA-11-06
  • [18] Bulut S., 2013, NOVI SAD J MATH, V43, P59
  • [19] Doman, 2015, CLASSICAL ORTHOGONAL, DOI [10.1142/9700, DOI 10.1142/9700]
  • [20] Fekete M., 1933, J. Lond. Math. Soc., Vs1-8, P85, DOI [10.1112/jlms/s1-8.2.85, DOI 10.1112/JLMS/S1-8.2.85]