Subclasses of bi-univalent functions subordinate to gegenbauer polynomials

被引:6
作者
Amourah, Ala [1 ]
Salleh, Zabidin [2 ]
Frasin, B. A. [3 ]
Khan, Muhammad Ghaffar [4 ]
Ahmad, Bakhtiar [5 ]
机构
[1] Irbid Natl Univ, Fac Sci & Technol, Dept Math, Irbid, Jordan
[2] Univ Malaysia Terengganu, Fac Ocean Engn Technol & Informat, Dept Math, Kuala Nerus 21030, Terenggunu, Malaysia
[3] Al Al Bayt Univ, Fac Sci, Dept Math, Mafraq, Jordan
[4] Kohat Univ Sci & Technol, Kohat, Pakistan
[5] Govt Degree Coll Mardan, Mardan 23200, Pakistan
关键词
Gegenbauer polynomials; Bi-univalent functions; Analytic functions; Fekete-Szego problem; COEFFICIENT;
D O I
10.1007/s13370-023-01082-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we introduce three new classes of bi-univalent functions defined by means of Gegenbauer polynomials. For functions in each of these three bi-univalent function classes, we have derived the estimates of the Taylor-Maclaurin coefficients |a(2)| and |a(3)| and Fekete-Szego functional problems for functions belonging to these new subclasses. A number of new results are shown to follow upon specializing the parameters involved in our main results.
引用
收藏
页数:14
相关论文
共 41 条
[11]   Fekete-Szego Inequality for Analytic and Biunivalent Functions Subordinate to Gegenbauer Polynomials [J].
Amourah, Ala ;
Frasin, Basem Aref ;
Abdeljawad, Thabet .
JOURNAL OF FUNCTION SPACES, 2021, 2021
[12]  
Amourah A, 2021, AFR MAT, V32, P1059, DOI 10.1007/s13370-021-00881-x
[13]  
[Anonymous], 2013, Novi Sad J. Math.
[14]  
Babalola K.O., 2013, J. Class. Anal., V3, P137
[15]  
Bateman H., 1953, Higher Transcendental Functions. Vol. II, VI
[16]  
Brannan D. A., 1980, P NATO ADV STUDY I H
[17]  
Bulut S., 2017, J. Fract. Calc. Appl., V8, P32
[18]  
Bulut S, 2017, J CLASS ANAL, V11, P83, DOI DOI 10.7153/JCA-11-06
[19]  
Doman B., 2015, CLASSICAL ORTHOGONAL, DOI [10.1142/9700, DOI 10.1142/9700]
[20]  
Fekete M., 1933, Journal of London Mathematical Society, Vs1-8, P85, DOI [10.1112/jlms/s1-8.2.85, DOI 10.1112/JLMS/S1-8.2.85]