Device Scheduling in Over-the-Air Federated Learning Via Matching Pursuit

被引:7
作者
Bereyhi, Ali [1 ]
Vagollari, Adela [2 ]
Asaad, Saba [3 ]
Muller, Ralf R. [2 ]
Gerstacker, Wolfgang [2 ]
Poor, H. Vincent [4 ]
机构
[1] Univ Toronto, Wireless Comp Lab, Toronto, ON M5S 2E4, Canada
[2] Friedrich Alexander Univ Erlangen Nurnberg, Inst Digital Commun, D-91058 Erlangen, Bayern, Germany
[3] York Univ, Next Generat Wireless Networks, Res Lab, Toronto, ON M3J 1P3, Canada
[4] Princeton Univ, Dept Elect & Comp Engn, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
Device scheduling; federated learning; matching pursuit; over-the-air computation; ANALOG FUNCTION COMPUTATION; ULTRA-DENSE NETWORKS; SIGNAL RECOVERY; ENABLING TECHNOLOGIES; ENERGY; ALGORITHMS; CHALLENGES;
D O I
10.1109/TSP.2023.3284376
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper develops a class of low-complexity device scheduling algorithms for over-the-air federated learning via the method of matching pursuit. The proposed scheme tracks closely the close-to-optimal performance achieved by difference-of-convex programming, and outperforms significantly the well-known benchmark algorithms based on convex relaxation. Compared to the state-of-the-art, the proposed scheme imposes a drastically lower computational load on the system: for K devices and N antennas at the parameter server, the benchmark complexity scales with (N-2 + K)(3) + N-6 while the complexity of the proposed scheme scales with (KNq)-N-p for some 0 < p, q <= 2. The efficiency of the proposed scheme is confirmed through the convergence analysis and numerical experiments on CIFAR-10 dataset.
引用
收藏
页码:2188 / 2203
页数:16
相关论文
共 50 条
  • [21] Beamforming and Device Selection Design in Federated Learning With Over-the-Air Aggregation
    Kalarde, Faeze Moradi
    Dong, Min
    Liang, Ben
    Ahmed, Yahia A. Eldemerdash
    Cheng, Ho Ting
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2024, 5 : 1710 - 1723
  • [22] Private Federated Learning With Misaligned Power Allocation via Over-the-Air Computation
    Yan, Na
    Wang, Kezhi
    Pan, Cunhua
    Chai, Kok Keong
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (09) : 1994 - 1998
  • [23] Edge Federated Learning via Unit-Modulus Over-The-Air Computation
    Wang, Shuai
    Hong, Yuncong
    Wang, Rui
    Hao, Qi
    Wu, Yik-Chung
    Ng, Derrick Wing Kwan
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (05) : 3141 - 3156
  • [24] Over-the-Air Federated Learning Exploiting Channel Perturbation
    Hamidi, Shayan Mohajer
    Mehrabi, Mohammad
    Khandani, Amir K.
    Gunduz, Deniz
    2022 IEEE 23RD INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATION (SPAWC), 2022,
  • [25] Cloud-RAN Over-the-Air Federated Learning
    Ma, Haoming
    Yuan, Xiaojun
    Ding, Zhi
    ICC 2024 - IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2024, : 4257 - 4262
  • [26] IRS Assisted Federated Learning: A Broadband Over-the-Air Aggregation Approach
    Zhang, Deyou
    Xiao, Ming
    Pang, Zhibo
    Wang, Lihui
    Poor, H. Vincent
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (05) : 4069 - 4082
  • [27] Over-the-Air Federated Learning in Digital Twins Empowered UAV Swarms
    Jiang, Bingqing
    Du, Jun
    Jiang, Chunxiao
    Han, Zhu
    Alhammadi, Ahmed
    Debbah, Merouane
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (11) : 17619 - 17634
  • [28] Gradient and Channel Aware Dynamic Scheduling for Over-the-Air Computation in Federated Edge Learning Systems
    Du, Jun
    Jiang, Bingqing
    Jiang, Chunxiao
    Shi, Yuanming
    Han, Zhu
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2023, 41 (04) : 1035 - 1050
  • [29] Federated Learning via Active RIS Assisted Over-the-Air Computation
    Zhang, Deyou
    Xiao, Ming
    Skoglund, Mikael
    Poor, H. Vincent
    2024 IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING FOR COMMUNICATION AND NETWORKING, ICMLCN 2024, 2024, : 201 - 207
  • [30] Blind Federated Learning via Over-the-Air q-QAM
    Razavikia, Saeed
    da Silva, José Mairton Barros
    Fischione, Carlo
    IEEE Transactions on Wireless Communications, 2024, 23 (12) : 19570 - 19586