Hierarchical Wilson-Cowan Models and Connection Matrices

被引:3
作者
Zuniga-Galindo, W. A. [1 ]
Zambrano-Luna, B. A. [1 ]
机构
[1] Univ Texas Rio Grande Valley, Sch Math & Stat Sci, One West Univ Blvd, Brownsville, TX 78520 USA
关键词
Wilson-Cowan model; connection matrices; p-adic numbers; small-world networks; P-ADIC NUMBERS;
D O I
10.3390/e25060949
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This work aims to study the interplay between the Wilson-Cowan model and connection matrices. These matrices describe cortical neural wiring, while Wilson-Cowan equations provide a dynamical description of neural interaction. We formulate Wilson-Cowan equations on locally compact Abelian groups. We show that the Cauchy problem is well posed. We then select a type of group that allows us to incorporate the experimental information provided by the connection matrices. We argue that the classical Wilson-Cowan model is incompatible with the small-world property. A necessary condition to have this property is that the Wilson-Cowan equations be formulated on a compact group. We propose a p-adic version of the Wilson-Cowan model, a hierarchical version in which the neurons are organized into an infinite rooted tree. We present several numerical simulations showing that the p-adic version matches the predictions of the classical version in relevant experiments. The p-adic version allows the incorporation of the connection matrices into the Wilson-Cowan model. We present several numerical simulations using a neural network model that incorporates a p-adic approximation of the connection matrix of the cat cortex.
引用
收藏
页数:20
相关论文
共 38 条
[1]   Determining the Hierarchical Architecture of the Human Brain Using Subject-Level Clustering of Functional Networks [J].
Akiki, Teddy J. ;
Abdallah, Chadi G. .
SCIENTIFIC REPORTS, 2019, 9 (1)
[2]  
Albeverio S., 2010, Theory of p adicdistributions: Linear And Nonlinear Models
[3]   p-adic description of characteristic relaxation in complex systems [J].
Avetisov, VA ;
Bikulov, AK ;
Al Osipov, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (15) :4239-4246
[4]   p-adic models of ultrametric diffusion constrained by hierarchical energy landscapes [J].
Avetisov, VA ;
Bikulov, AH ;
Kozyrev, SV ;
Osipov, VA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (02) :177-189
[5]   Small-World Brain Networks Revisited [J].
Bassett, Danielle S. ;
Bullmore, Edward T. .
NEUROSCIENTIST, 2017, 23 (05) :499-516
[6]   Regularization of p-adic string amplitudes, and multivariate local zeta functions [J].
Bocardo-Gaspar, Miriam ;
Garcia-Compean, H. ;
Zuniga-Galindo, W. A. .
LETTERS IN MATHEMATICAL PHYSICS, 2019, 109 (05) :1167-1204
[8]   Hierarchical Heterogeneity across Human Cortex Shapes Large-Scale Neural Dynamics [J].
Demirtas, Murat ;
Burt, Joshua B. ;
Helmer, Markus ;
Ji, Jie Lisa ;
Adkinson, Brendan D. ;
Glasser, Matthew F. ;
Van Essen, David C. ;
Sotiropoulos, Stamatios N. ;
Anticevic, Alan ;
Murray, John D. .
NEURON, 2019, 101 (06) :1181-+
[9]  
Fornito A., 2016, Fundamentals of Brain Network Analysis, P89, DOI DOI 10.1016/B978-0-12-407908-3.00003-0
[10]  
Halmos P., 1950, MEASURE THEORY, DOI DOI 10.1007/978-1-4684-9440-2