Kuramoto Model with Delay: The Role of the Frequency Distribution

被引:2
作者
Klinshov, Vladimir V. [1 ,2 ,3 ,4 ]
Zlobin, Alexander A. [1 ,2 ,3 ]
机构
[1] Russian Acad Sci, A V Gaponov Grekhov Inst Appl Phys, 46 Ulyanov St, Nizhnii Novgorod 603950, Russia
[2] Lobachevsky State Univ, Fac Radiophys Nizhny Novgorod, 23 Prospekt Gagarina, Nizhnii Novgorod 603022, Russia
[3] St Petersburg Univ, Leonhard Euler Int Math Inst, 7-9 Univ Skaya Embankment, St Petersburg 199034, Russia
[4] Natl Res Univ, Higher Sch Econ, 25-12 Bolshaya Pecherskaya St, Nizhnii Novgorod 603155, Russia
基金
俄罗斯科学基金会;
关键词
Kuramoto model; time delay; synchronization; COUPLED OSCILLATORS; PHASE-TRANSITIONS; DYNAMICAL-SYSTEMS; SYNCHRONIZATION; BEHAVIOR;
D O I
10.3390/math11102325
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Kuramoto model is a classical model used for the describing of synchronization in populations of oscillatory units. In the present paper we study the Kuramoto model with delay with a focus on the distribution of the oscillators' frequencies. We consider a series of rational distributions which allow us to reduce the population dynamics to a set of several delay differential equations. We use the bifurcation analysis of these equations to study the transition from the asynchronous to synchronous state. We demonstrate that the form of the frequency distribution may play a substantial role in synchronization. In particular, for Lorentzian distribution the delay prevents synchronization, while for other distributions the delay can facilitate synchronization.
引用
收藏
页数:11
相关论文
共 55 条
  • [1] The Kuramoto model:: A simple paradigm for synchronization phenomena
    Acebrón, JA
    Bonilla, LL
    Vicente, CJP
    Ritort, F
    Spigler, R
    [J]. REVIEWS OF MODERN PHYSICS, 2005, 77 (01) : 137 - 185
  • [2] External periodic driving of large systems of globally coupled phase oscillators
    Antonsen, T. M., Jr.
    Faghih, R. T.
    Girvan, M.
    Ott, E.
    Platig, J.
    [J]. CHAOS, 2008, 18 (03)
  • [3] EXACT LONG-TIME BEHAVIOR OF A NETWORK OF PHASE OSCILLATORS UNDER RANDOM-FIELDS
    ARENAS, A
    VICENTE, CJP
    [J]. PHYSICAL REVIEW E, 1994, 50 (02) : 949 - 956
  • [4] Generative models of cortical oscillations: neurobiological implications of the Kuramoto model
    Breakspear, Michael
    Heitmann, Stewart
    Daffertshofer, Andreas
    [J]. FRONTIERS IN HUMAN NEUROSCIENCE, 2010, 4
  • [5] OPTIMIZATION OF A CONTROL LAW TO SYNCHRONIZE MANIFOLDS BY A TRANSVERSE COMPONENT
    Cafaro, Adolfo Damiano
    Fiori, Simone
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (07): : 3947 - 3969
  • [6] Globally attracting synchrony in a network of oscillators with all-to-all inhibitory pulse coupling
    Canavier, Carmen C.
    Tikidji-Hamburyan, Ruben A.
    [J]. PHYSICAL REVIEW E, 2017, 95 (03)
  • [7] Synchronization in a system of globally coupled oscillators with time delay
    Choi, MY
    Kim, HJ
    Kim, D
    Hong, H
    [J]. PHYSICAL REVIEW E, 2000, 61 (01): : 371 - 381
  • [8] Generalising the Kuramoto model for the study of neuronal synchronisation in the brain
    Cumin, D.
    Unsworth, C. P.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2007, 226 (02) : 181 - 196
  • [9] Synchronization properties of network motifs: Influence of coupling delay and symmetry
    D'Huys, O.
    Vicente, R.
    Erneux, T.
    Danckaert, J.
    Fischer, I.
    [J]. CHAOS, 2008, 18 (03)
  • [10] Explosive synchronization enhanced by time-delayed coupling
    Dal'Maso Peron, Thomas Kaue
    Rodrigues, Francisco A.
    [J]. PHYSICAL REVIEW E, 2012, 86 (01):