Kuramoto Model with Delay: The Role of the Frequency Distribution

被引:2
|
作者
Klinshov, Vladimir V. [1 ,2 ,3 ,4 ]
Zlobin, Alexander A. [1 ,2 ,3 ]
机构
[1] Russian Acad Sci, A V Gaponov Grekhov Inst Appl Phys, 46 Ulyanov St, Nizhnii Novgorod 603950, Russia
[2] Lobachevsky State Univ, Fac Radiophys Nizhny Novgorod, 23 Prospekt Gagarina, Nizhnii Novgorod 603022, Russia
[3] St Petersburg Univ, Leonhard Euler Int Math Inst, 7-9 Univ Skaya Embankment, St Petersburg 199034, Russia
[4] Natl Res Univ, Higher Sch Econ, 25-12 Bolshaya Pecherskaya St, Nizhnii Novgorod 603155, Russia
基金
俄罗斯科学基金会;
关键词
Kuramoto model; time delay; synchronization; COUPLED OSCILLATORS; PHASE-TRANSITIONS; DYNAMICAL-SYSTEMS; SYNCHRONIZATION; BEHAVIOR;
D O I
10.3390/math11102325
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Kuramoto model is a classical model used for the describing of synchronization in populations of oscillatory units. In the present paper we study the Kuramoto model with delay with a focus on the distribution of the oscillators' frequencies. We consider a series of rational distributions which allow us to reduce the population dynamics to a set of several delay differential equations. We use the bifurcation analysis of these equations to study the transition from the asynchronous to synchronous state. We demonstrate that the form of the frequency distribution may play a substantial role in synchronization. In particular, for Lorentzian distribution the delay prevents synchronization, while for other distributions the delay can facilitate synchronization.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Time delay in the Kuramoto model with bimodal frequency distribution
    Montbrio, Ernest
    Pazo, Diego
    Schmidt, Juergen
    PHYSICAL REVIEW E, 2006, 74 (05):
  • [2] Exact results for the Kuramoto model with a bimodal frequency distribution
    Martens, E. A.
    Barreto, E.
    Strogatz, S. H.
    Ott, E.
    So, P.
    Antonsen, T. M.
    PHYSICAL REVIEW E, 2009, 79 (02):
  • [3] Dynamics of the Kuramoto Model with Bimodal Frequency Distribution on Complex Networks
    Feng Yue-E
    Li Hai-Hong
    Yang Jun-Zhong
    CHINESE PHYSICS LETTERS, 2014, 31 (08)
  • [4] Dynamics in the Sakaguchi-Kuramoto model with bimodal frequency distribution
    Guo, Shuangjian
    Xie, Yuan
    Dai, Qionglin
    Li, Haihong
    Yang, Junzhong
    PLOS ONE, 2020, 15 (12):
  • [5] Synchronous dynamics in the Kuramoto model with biharmonic interaction and bimodal frequency distribution
    Wang, Huobin
    Han, Wenchen
    Yang, Junzhong
    PHYSICAL REVIEW E, 2017, 96 (02)
  • [6] Nonstandard transitions in the Kuramoto model: a role of asymmetry in natural frequency distributions
    Terada, Yu
    Ito, Keigo
    Aoyagi, Toshio
    Yamaguchi, Yoshiyuki Y.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2017,
  • [7] Time delay in the Kuramoto model of coupled oscillators
    Yeung, MKS
    Strogatz, SH
    PHYSICAL REVIEW LETTERS, 1999, 82 (03) : 648 - 651
  • [8] Stability Diagram, Hysteresis, and Critical Time Delay and Frequency for the Kuramoto Model with Heterogeneous Interaction Delays
    Skardal, Per Sebastian
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (05):
  • [9] Synchronization of the generalized Kuramoto model with time delay and frustration
    Zhu, Tingting
    NETWORKS AND HETEROGENEOUS MEDIA, 2023, 18 (04) : 1772 - 1798
  • [10] Synchronization in a Kuramoto model with delay-dependent couplings
    Liu, Yue
    Guo, Yuxiao
    AIP ADVANCES, 2019, 9 (02)