KOSZUL FEYNMAN CATEGORIES

被引:2
作者
Kaufmann, Ralph M. [1 ]
Ward, Benjamin C. [2 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[2] Bowling Green State Univ, Dept Math & Stat, Bowling Green, OH 43403 USA
关键词
OPERADS;
D O I
10.1090/proc/16372
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. A cubical Feynman category, introduced by the authors in previous work, is a category whose functors to a base category C behave like operads in C. In this note we show that every cubical Feynman category is Koszul. The upshot is an explicit, minimal cofibrant resolution of any cubical Feynman category, which can be used to model 8 versions of generalizations of operads for both graph based and non-graph based examples.
引用
收藏
页码:3253 / 3267
页数:15
相关论文
共 20 条
  • [1] Minimal models for graph-related (hyper)operads
    Batanin, Michael
    Markl, Martin
    Obradovic, Jovana
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2023, 227 (07)
  • [2] Operadic categories and duoidal Deligne's conjecture
    Batanin, Michael
    Markl, Martin
    [J]. ADVANCES IN MATHEMATICS, 2015, 285 : 1630 - 1687
  • [3] Batanin Michael, 2021, PREPRINT
  • [4] The Boardman-Vogt resolution of operads in monoidal model categories
    Berger, Clemens
    Moerdijk, Ieke
    [J]. TOPOLOGY, 2006, 45 (05) : 807 - 849
  • [5] Coxeter complexes and graph-associahedra
    Carr, Michael
    Devadoss, Satyan L.
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2006, 153 (12) : 2155 - 2168
  • [6] Getzler E, 2009, PROG MATH, V269, P675, DOI 10.1007/978-0-8176-4745-2_16
  • [7] KOSZUL DUALITY FOR OPERADS
    GINZBURG, V
    KAPRANOV, M
    [J]. DUKE MATHEMATICAL JOURNAL, 1994, 76 (01) : 203 - 272
  • [8] Kaufmann R.M., 2021, REPRESENTATIONS ALGE, V769, P11
  • [9] Cochain level May-Steenrod operations
    Kaufmann, Ralph M.
    Medina-Mardones, Anibal M.
    [J]. FORUM MATHEMATICUM, 2021, 33 (06) : 1507 - 1526
  • [10] Decorated Feynman categories
    Kaufmann, Ralph M.
    Lucas, Jason
    [J]. JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2017, 11 (04) : 1437 - 1464