GraphCS: Graph-based client selection for heterogeneity in federated learning

被引:5
|
作者
Chang, Tao [1 ]
Li, Li [2 ]
Wu, MeiHan [1 ]
Yu, Wei [3 ]
Wang, Xiaodong [1 ]
Xu, ChengZhong [2 ]
机构
[1] Natl Univ Def Technol, Coll Comp, Key Lab Parallel & Distributed Comp, Changsha, Peoples R China
[2] Univ Macau, State Key Lab Internet Things Smart City, Taipa, Peoples R China
[3] China Elect Technol Grp Corp, Res Inst 30, Chengdu, Peoples R China
关键词
Federated learning; Client selection; Heterogeneity; ALGORITHMS;
D O I
10.1016/j.jpdc.2023.03.003
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Federated Learning coordinates many mobile devices to train an artificial intelligence model while preserving data privacy collaboratively. Mobile devices are usually equipped with totally different hardware configurations, leading to various training capabilities. At the same time, the distribution of the local training data is highly heterogeneous across different clients. Randomly selecting the clients to participate in the training process results in poor model performance and low system efficiency. In this paper, we propose GraphCS, a graph-based client selection framework for heterogeneity in Federated Learning. GraphCS first measures the distribution coupling across the clients via the model gradients. After that, it divides the clients into different groups according to the diversity of the local datasets. At the same time, it well estimates the runtime training capability of each client by jointly considering the hardware configuration and resource contention caused by the concurrently running apps. With the distribution coupling information and runtime training capability, GraphCS selects the best clients in order to well balance the model accuracy and overall training progress. We evaluate the performance of GraphCS with mobile devices with different hardware configurations on various datasets. The experiment results show that our approach improves model accuracy up to 45.69%. Meanwhile, it reduces communication and computation overhead 87.35% and 89.48% at best, respectively. Furthermore, GraphCS accelerates the overall training process up to 35x. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:131 / 143
页数:13
相关论文
共 50 条
  • [31] Client Selection and Resource Allocation via Graph Neural Networks for Efficient Federated Learning in Healthcare Environments
    Messinis, Sotirios C.
    Protonotarios, Nicholas E.
    Arapidis, Emmanouil
    Doulamis, Nikolaos
    17TH ACM INTERNATIONAL CONFERENCE ON PERVASIVE TECHNOLOGIES RELATED TO ASSISTIVE ENVIRONMENTS, PETRA 2024, 2024, : 606 - 612
  • [32] Optimal Client Selection of Federated Learning Based on Compressed Sensing
    Li, Qing
    Lyu, Shanxiang
    Wen, Jinming
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2025, 20 : 1679 - 1694
  • [33] Towards Communication-Efficient Federated Graph Learning: An Adaptive Client Selection Perspective
    Gao, Xianjun
    Liu, Jianchun
    Xu, Hongli
    Mai, Qianpiao
    Wang, Lun
    2024 IEEE/ACM 32ND INTERNATIONAL SYMPOSIUM ON QUALITY OF SERVICE, IWQOS, 2024,
  • [34] FedAHP: A Heterogeneous Client Selection Method for Federated Learning Based on the Analytic Hierarchy Process in Mobile Edge
    Zheng, Zhaohua
    Wang, Zizheng
    Tong, Xinyu
    Li, Keqiu
    Chen, Qiquan
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 968 - 973
  • [35] Knowledge Graph-Based Reinforcement Federated Learning for Chinese Question and Answering
    Xu, Liang
    Chen, Tao
    Hou, Zhaoxiang
    Zhang, Weishan
    Hon, Chitin
    Wang, Xiao
    Wang, Di
    Chen, Long
    Zhu, Wenyin
    Tian, Yunlong
    Ning, Huansheng
    Wang, Fei-Yue
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024, 11 (01) : 1035 - 1045
  • [36] Client Selection with Bandwidth Allocation in Federated Learning
    Kuang, Junqian
    Yang, Miao
    Zhu, Hongbin
    Qian, Hua
    2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
  • [37] An Efficient Client Selection for Wireless Federated Learning
    Chen, Jingyi
    Wang, Qiang
    Zhang, Wenqi
    2023 28TH ASIA PACIFIC CONFERENCE ON COMMUNICATIONS, APCC 2023, 2023, : 291 - 296
  • [38] Client Selection for Federated Learning With Label Noise
    Yang, Miao
    Qian, Hua
    Wang, Ximin
    Zhou, Yong
    Zhu, Honghin
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (02) : 2193 - 2197
  • [39] FedECS: Client Selection for Optimizing Computing Energy in Federated Learning
    Han, Shuo
    Zhang, Chenyu
    Wang, Luhan
    Zheng, Wei
    Wen, Xiangming
    2023 IEEE 34TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS, PIMRC, 2023,
  • [40] Adaptive client selection and model aggregation for heterogeneous federated learning
    Zhai, Rui
    Jin, Haozhe
    Gong, Wei
    Lu, Ke
    Liu, Yanhong
    Song, Yalin
    Yu, Junyang
    MULTIMEDIA SYSTEMS, 2024, 30 (04)