GraphCS: Graph-based client selection for heterogeneity in federated learning

被引:5
|
作者
Chang, Tao [1 ]
Li, Li [2 ]
Wu, MeiHan [1 ]
Yu, Wei [3 ]
Wang, Xiaodong [1 ]
Xu, ChengZhong [2 ]
机构
[1] Natl Univ Def Technol, Coll Comp, Key Lab Parallel & Distributed Comp, Changsha, Peoples R China
[2] Univ Macau, State Key Lab Internet Things Smart City, Taipa, Peoples R China
[3] China Elect Technol Grp Corp, Res Inst 30, Chengdu, Peoples R China
关键词
Federated learning; Client selection; Heterogeneity; ALGORITHMS;
D O I
10.1016/j.jpdc.2023.03.003
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Federated Learning coordinates many mobile devices to train an artificial intelligence model while preserving data privacy collaboratively. Mobile devices are usually equipped with totally different hardware configurations, leading to various training capabilities. At the same time, the distribution of the local training data is highly heterogeneous across different clients. Randomly selecting the clients to participate in the training process results in poor model performance and low system efficiency. In this paper, we propose GraphCS, a graph-based client selection framework for heterogeneity in Federated Learning. GraphCS first measures the distribution coupling across the clients via the model gradients. After that, it divides the clients into different groups according to the diversity of the local datasets. At the same time, it well estimates the runtime training capability of each client by jointly considering the hardware configuration and resource contention caused by the concurrently running apps. With the distribution coupling information and runtime training capability, GraphCS selects the best clients in order to well balance the model accuracy and overall training progress. We evaluate the performance of GraphCS with mobile devices with different hardware configurations on various datasets. The experiment results show that our approach improves model accuracy up to 45.69%. Meanwhile, it reduces communication and computation overhead 87.35% and 89.48% at best, respectively. Furthermore, GraphCS accelerates the overall training process up to 35x. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:131 / 143
页数:13
相关论文
共 50 条
  • [21] Federated learning energy saving through client selection
    Maciel, Filipe
    de Souza, Allan M.
    Bittencourt, Luiz F.
    Villas, Leandro A.
    Braun, Torsten
    PERVASIVE AND MOBILE COMPUTING, 2024, 103
  • [22] A Systematic Literature Review on Client Selection in Federated Learning
    Smestad, Carl
    Li, Jingyue
    27TH INTERNATIONAL CONFERENCE ON EVALUATION AND ASSESSMENT IN SOFTWARE ENGINEERING, EASE 2023, 2023, : 2 - 11
  • [23] A Robust Client Selection Mechanism for Federated Learning Environments
    Veiga, Rafael
    Sousa, John
    Morais, Renan
    Bastos, Lucas
    Lobato, Wellington
    Rosário, Denis
    Cerqueira, Eduardo
    Journal of the Brazilian Computer Society, 30 (01): : 444 - 455
  • [24] Client Selection in Federated Learning under Imperfections in Environment
    Rai, Sumit
    Kumari, Arti
    Prasad, Dilip K.
    AI, 2022, 3 (01) : 124 - 145
  • [25] FedCLS:A federated learning client selection algorithm based on cluster label information
    Li, Changsong
    Wu, Hao
    2022 IEEE 96TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-FALL), 2022,
  • [26] FedDCS: Federated Learning Framework based on Dynamic Client Selection
    Zou, Shutong
    Xiao, Mingjun
    Xu, Yin
    An, Baoyi
    Zheng, Jun
    2021 IEEE 18TH INTERNATIONAL CONFERENCE ON MOBILE AD HOC AND SMART SYSTEMS (MASS 2021), 2021, : 627 - 632
  • [27] A Secure and Fair Client Selection Based on DDPG for Federated Learning
    Wan, Tao
    Feng, Shun
    Liao, Weichuan
    Jiang, Nan
    Zhou, Jie
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2024, 2024
  • [28] Client Selection Based on Channel Capacity for Federated Learning Under Wireless Channels
    Yamazaki, Satoshi
    Furuki, Takuma
    2023 28TH ASIA PACIFIC CONFERENCE ON COMMUNICATIONS, APCC 2023, 2023, : 225 - 230
  • [29] Credit-Based Client Selection for Resilient Model Aggregation in Federated Learning
    Khorramfar, Mohammadreza
    Al Mtawa, Yaser
    Abusitta, Adel
    Halabi, Talal
    ICC 2024 - IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2024, : 3975 - 3981
  • [30] Auction-based client selection for online Federated Learning
    Guo, Juncai
    Su, Lina
    Liu, Jin
    Ding, Jianli
    Liu, Xiao
    Huang, Bo
    Li, Li
    INFORMATION FUSION, 2024, 112