GraphCS: Graph-based client selection for heterogeneity in federated learning

被引:5
|
作者
Chang, Tao [1 ]
Li, Li [2 ]
Wu, MeiHan [1 ]
Yu, Wei [3 ]
Wang, Xiaodong [1 ]
Xu, ChengZhong [2 ]
机构
[1] Natl Univ Def Technol, Coll Comp, Key Lab Parallel & Distributed Comp, Changsha, Peoples R China
[2] Univ Macau, State Key Lab Internet Things Smart City, Taipa, Peoples R China
[3] China Elect Technol Grp Corp, Res Inst 30, Chengdu, Peoples R China
关键词
Federated learning; Client selection; Heterogeneity; ALGORITHMS;
D O I
10.1016/j.jpdc.2023.03.003
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Federated Learning coordinates many mobile devices to train an artificial intelligence model while preserving data privacy collaboratively. Mobile devices are usually equipped with totally different hardware configurations, leading to various training capabilities. At the same time, the distribution of the local training data is highly heterogeneous across different clients. Randomly selecting the clients to participate in the training process results in poor model performance and low system efficiency. In this paper, we propose GraphCS, a graph-based client selection framework for heterogeneity in Federated Learning. GraphCS first measures the distribution coupling across the clients via the model gradients. After that, it divides the clients into different groups according to the diversity of the local datasets. At the same time, it well estimates the runtime training capability of each client by jointly considering the hardware configuration and resource contention caused by the concurrently running apps. With the distribution coupling information and runtime training capability, GraphCS selects the best clients in order to well balance the model accuracy and overall training progress. We evaluate the performance of GraphCS with mobile devices with different hardware configurations on various datasets. The experiment results show that our approach improves model accuracy up to 45.69%. Meanwhile, it reduces communication and computation overhead 87.35% and 89.48% at best, respectively. Furthermore, GraphCS accelerates the overall training process up to 35x. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:131 / 143
页数:13
相关论文
共 50 条
  • [1] Client Selection for Wireless Federated Learning With Data and Latency Heterogeneity
    Chen, Xiaobing
    Zhou, Xiangwei
    Zhang, Hongchao
    Sun, Mingxuan
    Vincent Poor, H.
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (19): : 32183 - 32196
  • [2] Addressing Heterogeneity in Federated Learning with Client Selection via Submodular Optimization
    Zhang, Jinghui
    Wang, Jiawei
    Li, Yaning
    Xin, Fa
    Dong, Fang
    Luo, Junzhou
    Wu, Zhihua
    ACM TRANSACTIONS ON SENSOR NETWORKS, 2024, 20 (02)
  • [3] FedSCS: Client Selection for Federated Learning Under System Heterogeneity and Client Fairness with a Stackelberg Game Approach
    Yin, Tong
    Li, Lixin
    Lin, Wensheng
    Liang, Wei
    Li, Xu
    Han, Zhu
    2023 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS, ICC WORKSHOPS, 2023, : 373 - 378
  • [4] Client Selection in Hierarchical Federated Learning
    Trindade, Silvana
    da Fonseca, Nelson L. S.
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (17): : 28480 - 28495
  • [5] Client Selection Method for Federated Learning Based on Grouping Reinforcement Learning
    Li, Guo-ming
    Liu, Wai-xi
    Guo, Zhen-zheng
    Chen, Dao-xiao
    2024 9TH INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION SYSTEMS, ICCCS 2024, 2024, : 327 - 332
  • [6] Federated learning client selection algorithm based on gradient similarity
    Hu, Lingxi
    Hu, Yuanyuan
    Jiang, Linhua
    Long, Wei
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2025, 28 (02):
  • [7] Client Selection Mechanism for Federated Learning Based on Class Imbalance
    Zhang, Linlin
    Lin, Congjie
    Bie, Zhangshuai
    Li, Shuo
    Bi, Xuehua
    Zhao, Kai
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT 1, 2025, 15031 : 266 - 278
  • [8] FedBoost: Bayesian Estimation Based Client Selection for Federated Learning
    Sheng, Yuhang
    Zeng, Lingguo
    Cao, Shuqin
    Dai, Qing
    Yang, Shasha
    Lu, Jianfeng
    IEEE ACCESS, 2024, 12 : 52255 - 52266
  • [9] Client Selection Based on Label Quantity Information for Federated Learning
    Ma, Jiahua
    Sun, Xinghua
    Xia, Wenchao
    Wang, Xijun
    Chen, Xiang
    Zhu, Hongbo
    2021 IEEE 32ND ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS (PIMRC), 2021,
  • [10] A review on client selection models in federated learning
    Panigrahi, Monalisa
    Bharti, Sourabh
    Sharma, Arun
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2023, 13 (06)