Crystal of Affine (s)over-capll and Modular Branching Rules for Hecke Algebras of Type Dn

被引:0
|
作者
Lin, Huang [1 ]
Hu, Jun [2 ]
机构
[1] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Peoples R China
[2] Beijing Inst Technol, Sch Math & Stat, MIIT Key Lab Math Theory & Computat Informat Secur, Beijing 100081, Peoples R China
来源
FRONTIERS OF MATHEMATICS | 2023年 / 18卷 / 02期
基金
中国国家自然科学基金;
关键词
Iwahori-Hecke algebras; Kleshchev bipartitions; crystal bases; Kashiwara operators; SYMMETRIC-GROUPS; REPRESENTATIONS; BLOCKS;
D O I
10.1007/s11464-021-0186-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Hq(Bn) and Hq(Dn) denote the Hecke algebras of types Bn and Dn respectively, where q not equal 1 is the Hecke parameter with quantum characteristic e. We prove that if D lambda is a simple Hq(B-2n)-module which splits as D-+(lambda) circle plus D lambda(-) upon restriction to Hq(D-2n), then D-+(lambda) down arrow H-q(D2n-1) congruent to D lambda and D-+(lambda) up arrow(Hq)(D2n+1)congruent to D lambda(-) up arrow(Hq(D2n+1)). In particular, we get some multiplicityfree results for certain two-step modular branching rules. We also show that when e = 2l > 2 the highest weight crystal of the irreducible sll`-module L(Lambda 0) can be categorified using the simple H-q(D2n)-modules {D lambda(+) broken vertical bar lambda = (lambda((1)); lambda((2)))proves 2n;D lambda down arrow H-q(D-2n) (congruent to) D-+(lambda) circle plus D--(lambda) n is an element of N} and certain two-step induction and restriction functors. Finally, a complete classification of all the simple blocks of H-q(D-n) is also obtained.
引用
收藏
页码:277 / 306
页数:30
相关论文
共 5 条