3D self-assembled nanocarriers for drug delivery

被引:3
作者
Mirzahosseini, Hossein Karballaei [1 ]
Sheikhi, Mojgan [2 ]
Najmeddin, Farhad [3 ]
Shirangi, Mehrnoosh [2 ]
Mojtahedzadeh, Mojtaba [3 ,4 ]
机构
[1] Univ Tehran Med Sci, Sch Pharm, Dept Clin Pharm, Tehran, Iran
[2] Univ Tehran Med Sci, Fac Pharm, Dept Drug & Food Control, Tehran, Iran
[3] Univ Tehran Med Sci, Dept Clin Pharm, Tehran, Iran
[4] Univ Tehran Med Sci, Pharmaceut Res Ctr, Tehran, Iran
关键词
Nanomaterials; 3D self-assembly; drug delivery; peptides; carbon-based nanoparticles; WALLED CARBON NANOTUBES; SUPRAMOLECULAR FILAMENT HYDROGELS; NANO-GRAPHENE OXIDE; CONTROLLED-RELEASE; FULLERENE DERIVATIVES; DIAMOND NANOPARTICLES; IN-VITRO; PEPTIDE; CANCER; CELLS;
D O I
10.1080/03602532.2023.2172182
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
There are many benefits to drug delivery from drug-carrier nanostructure systems. It might be developed to carefully control drug release rates or to deliver a precise amount of a therapeutic substance to particular body areas. Self-assembling is the process by which molecules and nanoparticles spontaneously organize into organized clusters. For instance, proteins and peptides can interact with one another to create highly organized supramolecular structures with various properties, such as helical ribbons and fibrous scaffolds. Another advantage of self-assembly is that it may be effective with a variety of materials, including metals, oxides, inorganic salts, polymers, semiconductors, and even organic semiconductors. Fullerene, graphene, and carbon nanotubes (CNTs), three of the most fundamental classes of three-dimensionally self-assembling nanostructured carbon-based materials, are essential for the development of modern nanotechnologies. Self-assembled nanomaterials are used in a variety of fields, including nanotechnology, imaging, and biosensors. This review study begins with a summary of various major 3D nanomaterials, including graphene oxide, CNTs, and nanodiamond, as well as 3D self-assembled polyfunctionalized nanostructures and adaptable nanocarriers for drug delivery.
引用
收藏
页码:140 / 162
页数:23
相关论文
共 130 条
[21]   Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials [J].
Dutta, Debamitra ;
Sundaram, Shanmugavelayutham Kamakshi ;
Teeguarden, Justin Gary ;
Riley, Brian Joseph ;
Fifield, Leonard Sheldon ;
Jacobs, Jon Morrell ;
Addleman, Shane Raymond ;
Kaysen, George Alan ;
Moudgil, Brij Mohan ;
Weber, Thomas Joseph .
TOXICOLOGICAL SCIENCES, 2007, 100 (01) :303-315
[22]  
El-Sau KM., 2011, J Appl Pharm Sci, V1, P29
[23]   Thin Film Nanotube Transistors Based on Self-Assembled, Aligned, Semiconducting Carbon Nanotube Arrays [J].
Engel, Michael ;
Small, Joshua P. ;
Steiner, Mathias ;
Freitag, Marcus ;
Green, Alexander A. ;
Hersam, Mark C. ;
Avouris, Phaedon .
ACS NANO, 2008, 2 (12) :2445-2452
[24]   The preparation and drug delivery of a graphene-carbon nanotube-Fe3O4 nanoparticle hybrid [J].
Fan, Xiujuan ;
Jiao, Guozheng ;
Gao, Lei ;
Jin, Pengfei ;
Li, Xin .
JOURNAL OF MATERIALS CHEMISTRY B, 2013, 1 (20) :2658-2664
[25]   Self-assembled nanostructured materials [J].
Fendler, JH .
CHEMISTRY OF MATERIALS, 1996, 8 (08) :1616-1624
[26]   Graphene based gene transfection [J].
Feng, Liangzhu ;
Zhang, Shuai ;
Liu, Zhuang .
NANOSCALE, 2011, 3 (03) :1252-1257
[27]   Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems [J].
Ferrari, Andrea C. ;
Bonaccorso, Francesco ;
Fal'ko, Vladimir ;
Novoselov, Konstantin S. ;
Roche, Stephan ;
Boggild, Peter ;
Borini, Stefano ;
Koppens, Frank H. L. ;
Palermo, Vincenzo ;
Pugno, Nicola ;
Garrido, Jose A. ;
Sordan, Roman ;
Bianco, Alberto ;
Ballerini, Laura ;
Prato, Maurizio ;
Lidorikis, Elefterios ;
Kivioja, Jani ;
Marinelli, Claudio ;
Ryhaenen, Tapani ;
Morpurgo, Alberto ;
Coleman, Jonathan N. ;
Nicolosi, Valeria ;
Colombo, Luigi ;
Fert, Albert ;
Garcia-Hernandez, Mar ;
Bachtold, Adrian ;
Schneider, Gregory F. ;
Guinea, Francisco ;
Dekker, Cees ;
Barbone, Matteo ;
Sun, Zhipei ;
Galiotis, Costas ;
Grigorenko, Alexander N. ;
Konstantatos, Gerasimos ;
Kis, Andras ;
Katsnelson, Mikhail ;
Vandersypen, Lieven ;
Loiseau, Annick ;
Morandi, Vittorio ;
Neumaier, Daniel ;
Treossi, Emanuele ;
Pellegrini, Vittorio ;
Polini, Marco ;
Tredicucci, Alessandro ;
Williams, Gareth M. ;
Hong, Byung Hee ;
Ahn, Jong-Hyun ;
Kim, Jong Min ;
Zirath, Herbert ;
van Wees, Bart J. .
NANOSCALE, 2015, 7 (11) :4598-4810
[28]   Increase of the duration of the anticonvulsive activity of a novel NMDA receptor antagonist using poly(butylcyanoacrylate) nanoparticles as a parenteral controlled release system [J].
Friese, A ;
Seiller, E ;
Quack, G ;
Lorenz, B ;
Kreuter, J .
EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS, 2000, 49 (02) :103-109
[29]   Biomedical Applications of Carbon Nanomaterials: Fullerenes, Quantum Dots, Nanotubes, Nanofibers, and Graphene [J].
Gaur, Manish ;
Misra, Charu ;
Yadav, Awadh Bihari ;
Swaroop, Shiv ;
Maolmhuaidh, Fionn O. ;
Bechelany, Mikhael ;
Barhoum, Ahmed .
MATERIALS, 2021, 14 (20)
[30]  
Gause, 2010, FULLERENE NANOMEDICI