A Systematic Survey of Just-in-Time Software Defect Prediction

被引:32
|
作者
Zhao, Yunhua [1 ]
Damevski, Kostadin [2 ]
Chen, Hui [1 ,3 ]
机构
[1] CUNY, Grad Ctr, Dept Comp Sci, 365 5th Ave, New York, NY 10016 USA
[2] Virginia Commonwealth Univ, Dept Comp Sci, 401 West Main St, Richmond, VA 23284 USA
[3] CUNY, Brooklyn Coll, Dept Comp & Informat Sci, 2900 Bedford Ave, Brooklyn, NY 11210 USA
关键词
Software defect prediction; release software defect prediction; just-in-time software defect prediction; change-level software defect prediction; machine learning; searching-based algorithms; software change metrics; change defect density; REVIEWS; MODELS; IMPACT;
D O I
10.1145/3567550
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Recent years have experienced sustained focus in research on software defect prediction that aims to predict the likelihood of software defects. Moreover, with the increased interest in continuous deployment, a variant of software defect prediction called Just-in-Time Software Defect Prediction ( JIT-SDP) focuses on predicting whether each incremental software change is defective. JIT-SDP is unique in that it consists of two interconnected data streams, one consisting of the arrivals of software changes stemming from design and implementation, and the other the (defective or clean) labels of software changes resulting from quality assurance processes. We present a systematic survey of 67 JIT-SDP studies with the objective to help researchers advance the state of the art in JIT-SDP and to help practitioners become familiar with recent progress. We summarize best practices in each phase of the JIT-SDP workflow, carry out a meta-analysis of prior studies, and suggest future research directions. Our meta-analysis of JIT-SDP studies indicates, among other findings, that the predictive performance correlates with change defect ratio, suggesting that JIT-SDP is most performant in projects that experience relatively high defect ratios. Future research directions for JIT-SDP include situating each technique into its application domain, reliability-aware JIT-SDP, and user-centered JIT-SDP.
引用
收藏
页数:35
相关论文
共 50 条
  • [21] Just-in-Time Defect Prediction for Self-driving Software via a Deep Learning Model
    Choi, Jiwon
    Kim, Taeyoung
    Ryu, Duksan
    Baik, Jongmoon
    Kim, Suntae
    JOURNAL OF WEB ENGINEERING, 2023, 22 (02): : 303 - 326
  • [22] An Empirical Analysis on Just-In-Time Defect Prediction Models for Self-driving Software Systems
    Choi, Jiwon
    Manikandan, Saranya
    Ryu, Duksan
    Baik, Jongmoon
    FRONTIERS OF COMPUTER VISION, IW-FCV 2024, 2024, 2143 : 34 - 45
  • [23] Just-in-time software defect prediction method for non-stationary and imbalanced data streams
    Wu, Qikai
    Wang, Xingqi
    Wei, Dan
    Chen, Bin
    Dang, Qingguo
    SOFTWARE QUALITY JOURNAL, 2025, 33 (01)
  • [24] A Procedure to Continuously Evaluate Predictive Performance of Just-In-Time Software Defect Prediction Models During Software Development
    Song, Liyan
    Minku, Leandro L.
    IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2023, 49 (02) : 646 - 666
  • [25] Feature Sets in Just-in-Time Defect Prediction: An Empirical Evaluation
    Bludau, Peter
    Pretschner, Alexander
    PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON PREDICTIVE MODELS AND DATA ANALYTICS IN SOFTWARE ENGINEERING, PROMISE 2022, 2022, : 22 - 31
  • [26] Deep Just-in-Time Defect Prediction: How Far Are We?
    Zeng, Zhengran
    Zhang, Yuqun
    Zhang, Haotian
    Zhang, Lingming
    ISSTA '21: PROCEEDINGS OF THE 30TH ACM SIGSOFT INTERNATIONAL SYMPOSIUM ON SOFTWARE TESTING AND ANALYSIS, 2021, : 427 - 438
  • [27] Just-in-time defect prediction based on AST change embedding
    Zhuang, Weiyuan
    Wang, Hao
    Zhang, Xiaofang
    KNOWLEDGE-BASED SYSTEMS, 2022, 248
  • [28] Multi-task deep neural networks for just-in-time software defect prediction on mobile apps
    Huang, Qiguo
    Li, Zhengliang
    Gu, Qing
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2024, 36 (10)
  • [29] Toward Reduction in False Positives Just-In-Time Software Defect Prediction Using Deep Reinforcement Learning
    Ismail, Ahmad Muhaimin
    AB Hamid, Siti Hafizah
    Sani, Asmiza Abdul
    Daud, Nur Nasuha Mohd
    IEEE ACCESS, 2024, 12 : 47568 - 47580
  • [30] Effort-aware and just-in-time defect prediction with neural network
    Qiao, Lei
    Wang, Yan
    PLOS ONE, 2019, 14 (02):