Ancient Caloric Functions on Pseudohermitian Manifolds

被引:0
作者
Ho, Pak Tung [1 ,2 ,3 ]
机构
[1] Sogang Univ, Dept Math, Seoul 04107, South Korea
[2] Korea Inst Adv Study, Seoul 02455, South Korea
[3] Tamkang Univ, Dept Math, Tamsui, New Taipei City 251301, Taiwan
基金
新加坡国家研究基金会;
关键词
Ancient caloric functions; Pseudohermitian manifolds; Polynomial growth; GROWTH HARMONIC-FUNCTIONS; SECTIONS; BOUNDS;
D O I
10.1007/s12220-022-01101-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any Riemannian manifold with polynomial volume growth, Colding and Minicozzi obtained a sharp bound on the dimension of the space of ancient caloric functions with polynomial growth. For any pseudohermitian manifold satisfies doubling volume property and parabolic mean value property, we obtain in this paper a sharp bound on the dimension of the space of ancient pseudohermitian caloric functions with polynomial growth.
引用
收藏
页数:21
相关论文
共 19 条
  • [1] [Anonymous], 1993, Proc. Sympos. Pure. Math
  • [2] Sums of powers of integers
    Beardon, AF
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1996, 103 (03) : 201 - 213
  • [3] A CR Analogue of Yau's Conjecture on Pseudoharmonic Functions of Polynomial Growth
    Chang, Der-Chen
    Chang, Shu-cheng
    Han, Yingbo
    Tie, Jingzhi
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2019, 71 (06): : 1367 - 1394
  • [4] CR Sub-Laplacian Comparison and Liouville-Type Theorem in a Complete Noncompact Sasakian Manifold
    Chang, Shu-Cheng
    Kuo, Ting-Jung
    Lin, Chien
    Tie, Jingzhi
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2019, 29 (02) : 1676 - 1705
  • [5] Chang SC, 2011, J DIFFER GEOM, V89, P185
  • [6] Linear growth harmonic functions on complete manifolds with nonnegative Ricci curvature
    Cheeger, J
    Colding, TH
    Minicozzi, WP
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 1995, 5 (06) : 948 - 954
  • [7] DIFFERENTIAL EQUATIONS ON RIEMANNIAN MANIFOLDS AND THEIR GEOMETRIC APPLICATIONS
    CHENG, SY
    YAU, ST
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1975, 28 (03) : 333 - 354
  • [8] Colding TH, 1997, J DIFFER GEOM, V46, P1
  • [9] Colding TH, 1998, COMMUN PUR APPL MATH, V51, P113, DOI 10.1002/(SICI)1097-0312(199802)51:2<113::AID-CPA1>3.0.CO
  • [10] 2-E