A meta-analysis on morphological, physiological and biochemical responses of plants with PGPR inoculation under drought stress

被引:49
|
作者
Zhao, Xiaowen [1 ,2 ,3 ,4 ]
Yuan, Xiaomai [1 ,2 ,3 ]
Xing, Yuanjun [1 ,2 ,3 ]
Dao, Jicao [1 ,2 ,3 ]
Zhao, Deqiang [5 ]
Li, Yuze [6 ]
Li, Weiwei [4 ]
Wang, Ziting [1 ,2 ,3 ]
机构
[1] Guangxi Key Lab Sugarcane Biol, Nanning, Guangxi, Peoples R China
[2] Guangxi Univ, State Key Lab Conservat & Utilisat Subtrop Agrobi, Nanning, Guangxi, Peoples R China
[3] Guangxi Univ, Coll Agron, Univ East Rd 100, Nanning 530004, Guangxi, Peoples R China
[4] Nanjing Agr Univ, Coll Agron, Nanjing 210095, Peoples R China
[5] China Agr Univ, Coll Agron & Biotechnol, Beijing, Peoples R China
[6] Northwest A&F Univ, Coll Agron, Yangling 712100, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
PGPR taxanomic and functional traits; plant photosynthetic pathway; GROWTH-PROMOTING RHIZOBACTERIA; NITROGEN NUTRITION; TOLERANCE; WATER; SOIL; DYNAMICS; BACILLUS; YIELD; WHEAT; COLD;
D O I
10.1111/pce.14466
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Plant growth-promoting rhizobacteria (PGPR) can help plants to resist drought stress. However, the mechanisms of how PGPR inoculation affect plant status under drought remain incompletely understood. We performed a meta-analysis of plant response to PGPR inoculation by compiling data from 57 PGPR-inoculation studies, including 2, 387 paired observations on morphological, physiological and biochemical parameters under drought and well-watered conditions. We compare the PGPR effect on plants performances among different groups of controls and treatments. Our results reveal that PGPR enables plants to restore themselves from drought-stressed to near a well-watered state, and that C4 plants recover better from drought stress than C3 plants. Furthermore, PGPR is more effective underdrought than well-watered conditions in increasing plant biomass, enhancing photosynthesis and inhibiting oxidant damage, and the responses of C4 plants to the PGPR effect was stronger than that of C3 plants under drought conditions. Additionally, PGPR belonging to different taxa and PGPR with different functional traits have varying degrees of drought-resistance effects on plants. These results are important to improve our understanding of the PGPR beneficial effects on enhanced drought-resistance of plants.
引用
收藏
页码:199 / 214
页数:16
相关论文
共 50 条
  • [21] Drought Stress Tolerance in Plants: Interplay of Molecular, Biochemical and Physiological Responses in Important Development Stages
    Oguz, Muhammet Cagri
    Aycan, Murat
    Oguz, Ezgi
    Poyraz, Irem
    Yildiz, Mustafa
    PHYSIOLOGIA, 2022, 2 (04): : 180 - 197
  • [22] Meta-analysis of plant growth-promoting rhizobacteria interaction with host plants: implications for drought stress response gene expression
    Ferrante, Roberta
    Campagni, Chiara
    Vettori, Cristina
    Checcucci, Alice
    Garosi, Cesare
    Paffetti, Donatella
    FRONTIERS IN PLANT SCIENCE, 2024, 14
  • [23] Inoculation of tomato plants with selected PGPR represents a feasible alternative to chemical fertilization under salt stress
    Cordero, Irene
    Balaguer, Luis
    Rincon, Ana
    Pueyo, Jose J.
    JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, 2018, 181 (05) : 694 - 703
  • [24] Effect of Biochar Amendment on the Growth and Photosynthetic Traits of Plants Under Drought Stress: A Meta-Analysis
    Zhang, Wenqian
    Niu, Wenquan
    Luo, Huoqian
    AGRONOMY-BASEL, 2024, 14 (12):
  • [25] Shifts in biochemical and physiological responses by the inoculation of arbuscular mycorrhizal fungi in Triticum aestivum growing under drought conditions
    Tereucan, Gonzalo
    Ruiz, Antonieta
    Nahuelcura, Javiera
    Oyarzun, Paulina
    Santander, Christian
    Winterhalter, Peter
    Avelar Ferreira, Paulo Ademar
    Cornejo, Pablo
    JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, 2022, 102 (05) : 1927 - 1938
  • [26] Morphological and Physiological Responses of Melia azedarach Seedlings of Different Provenances to Drought Stress
    Han, Chao
    Chen, Junna
    Liu, Zemao
    Chen, Hong
    Yu, Fangyuan
    Yu, Wanwen
    AGRONOMY-BASEL, 2022, 12 (06):
  • [27] Morphological, physiological and biochemical responses to drought stress of Stone pine (Pinus pinea L.) seedlings
    Deligoz, Ayse
    Gur, Merve
    ACTA PHYSIOLOGIAE PLANTARUM, 2015, 37 (11)
  • [28] Morphological, physiological and biochemical responses to combined cadmium and drought stress in radish (Raphanus sativus L.)
    Tuver, Gamze Yildiz
    Ekinci, Melek
    Yildirim, Ertan
    RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI, 2022, 33 (02) : 419 - 429
  • [29] LEAF PHYSIOLOGICAL AND ROOT MORPHOLOGICAL PARAMETERS OF GRAFTED TOMATO PLANTS UNDER DROUGHT STRESS CONDITIONS
    Ulas, Firdes
    Fricke, Andreas
    Stutzel, Hartmut
    FRESENIUS ENVIRONMENTAL BULLETIN, 2019, 28 (4A): : 3423 - 3434
  • [30] A meta-analysis highlights the cross-resistance of plants to drought and salt stresses from physiological, biochemical, and growth levels
    Cao, Heli
    Ding, Risheng
    Du, Taisheng
    Kang, Shaozhong
    Tong, Ling
    Chen, Jinliang
    Gao, Jia
    PHYSIOLOGIA PLANTARUM, 2024, 176 (02)