A meta-analysis on morphological, physiological and biochemical responses of plants with PGPR inoculation under drought stress

被引:49
|
作者
Zhao, Xiaowen [1 ,2 ,3 ,4 ]
Yuan, Xiaomai [1 ,2 ,3 ]
Xing, Yuanjun [1 ,2 ,3 ]
Dao, Jicao [1 ,2 ,3 ]
Zhao, Deqiang [5 ]
Li, Yuze [6 ]
Li, Weiwei [4 ]
Wang, Ziting [1 ,2 ,3 ]
机构
[1] Guangxi Key Lab Sugarcane Biol, Nanning, Guangxi, Peoples R China
[2] Guangxi Univ, State Key Lab Conservat & Utilisat Subtrop Agrobi, Nanning, Guangxi, Peoples R China
[3] Guangxi Univ, Coll Agron, Univ East Rd 100, Nanning 530004, Guangxi, Peoples R China
[4] Nanjing Agr Univ, Coll Agron, Nanjing 210095, Peoples R China
[5] China Agr Univ, Coll Agron & Biotechnol, Beijing, Peoples R China
[6] Northwest A&F Univ, Coll Agron, Yangling 712100, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
PGPR taxanomic and functional traits; plant photosynthetic pathway; GROWTH-PROMOTING RHIZOBACTERIA; NITROGEN NUTRITION; TOLERANCE; WATER; SOIL; DYNAMICS; BACILLUS; YIELD; WHEAT; COLD;
D O I
10.1111/pce.14466
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Plant growth-promoting rhizobacteria (PGPR) can help plants to resist drought stress. However, the mechanisms of how PGPR inoculation affect plant status under drought remain incompletely understood. We performed a meta-analysis of plant response to PGPR inoculation by compiling data from 57 PGPR-inoculation studies, including 2, 387 paired observations on morphological, physiological and biochemical parameters under drought and well-watered conditions. We compare the PGPR effect on plants performances among different groups of controls and treatments. Our results reveal that PGPR enables plants to restore themselves from drought-stressed to near a well-watered state, and that C4 plants recover better from drought stress than C3 plants. Furthermore, PGPR is more effective underdrought than well-watered conditions in increasing plant biomass, enhancing photosynthesis and inhibiting oxidant damage, and the responses of C4 plants to the PGPR effect was stronger than that of C3 plants under drought conditions. Additionally, PGPR belonging to different taxa and PGPR with different functional traits have varying degrees of drought-resistance effects on plants. These results are important to improve our understanding of the PGPR beneficial effects on enhanced drought-resistance of plants.
引用
收藏
页码:199 / 214
页数:16
相关论文
共 50 条
  • [1] Morphological, physiological and biochemical responses of plants to drought stress
    Anjum, Shakeel Ahmad
    Xie, Xiao-yu
    Wang, Long-chang
    Saleem, Muhammad Farrukh
    Man, Chen
    Lei, Wang
    AFRICAN JOURNAL OF AGRICULTURAL RESEARCH, 2011, 6 (09): : 2026 - 2032
  • [2] Morphological, biochemical, and physiological responses of canola cultivars to drought stress
    Oskuei, B. Kazemi
    Bandehagh, A.
    Farajzadeh, D.
    Lajayer, B. Asgari
    Rajput, V. D.
    Astatkie, T.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2023, 20 (12) : 13551 - 13560
  • [3] Physiological and biochemical responses of soybean plants inoculated with Arbuscular mycorrhizal fungi and Bradyrhizobium under drought stress
    Sheteiwy, Mohamed S.
    Ali, Dina Fathi Ismail
    Xiong, You-Cai
    Brestic, Marian
    Skalicky, Milan
    Hamoud, Yousef Alhaj
    Ulhassan, Zaid
    Shaghaleh, Hiba
    AbdElgawad, Hamada
    Farooq, Muhammad
    Sharma, Anket
    El-Sawah, Ahmed M.
    BMC PLANT BIOLOGY, 2021, 21 (01)
  • [4] PHYSIOLOGICAL AND BIOCHEMICAL RESPONSES OF WHEAT SPECIES WITH DIFFERENT PLOIDY LEVEL UNDER DROUGHT STRESS
    Baloglu, Mehmet Cengiz
    Cetin, Fadime
    FRESENIUS ENVIRONMENTAL BULLETIN, 2020, 29 (12): : 10536 - 10545
  • [5] Morphological Structure and Physiological and Biochemical Responses to Drought Stress of Iris japonica
    Yu, Xiaofang
    Liu, Yujia
    Cao, Panpan
    Zeng, Xiaoxuan
    Xu, Bin
    Luo, Fuwen
    Yang, Xuan
    Wang, Xiantong
    Wang, Xiaoyu
    Xiao, Xue
    Yang, Lijuan
    Lei, Ting
    PLANTS-BASEL, 2023, 12 (21):
  • [6] PHYSIOLOGICAL AND BIOCHEMICAL RESPONSES OF PLANTS UNDER FLUORIDE STRESS: AN OVERVIEW
    Baunthiyal, Mamta
    Ranghar, Shweta
    FLUORIDE, 2014, 47 (04) : 287 - 293
  • [7] Comprehensive evaluation of drought stress on medicinal plants: a meta-analysis
    Tan, Ugur
    Goren, Hatice Kubra
    PEERJ, 2024, 12
  • [8] Physiological and Biochemical Responses of Commercial Strawberry Cultivars under Optimal and Drought Stress Conditions
    Zahedi, Seyed Morteza
    Hosseini, Marjan Sadat
    Fahadi Hoveizeh, Narjes
    Kadkhodaei, Saeid
    Vaculik, Marek
    PLANTS-BASEL, 2023, 12 (03):
  • [9] Physiological and Biochemical Response of Transgenic Cotton Plants to Drought Stress
    Zameer, Mariam
    Shafique, Shazia
    Shafique, Sobiya
    Tahir, Usaal
    Zahra, Nureen
    Rashid, Bushra
    Afzaal, Rubab
    POLISH JOURNAL OF ENVIRONMENTAL STUDIES, 2022, 31 (04): : 3909 - 3918
  • [10] Morphological and Physiological Responses of Maize Seedlings under Drought and Waterlogging
    Salah, A.
    Li, J.
    Ge, J.
    Cao, C.
    Li, H.
    Wang, Y.
    Liu, Z.
    Zhan, M.
    Zhao, M.
    JOURNAL OF AGRICULTURAL SCIENCE AND TECHNOLOGY, 2019, 21 (05): : 1199 - 1214