Numerical analysis and optimization of the charging process on a shell-and-tube latent heat thermal energy storage unit for a solar power plant with direct steam generation

被引:3
|
作者
Deng, Yajun [1 ]
Zhu, Zhengyue [1 ]
Wang, Wenzhao [1 ]
Ye, Qianhao [2 ]
Yu, Bo [1 ]
Sun, Dongliang [1 ]
机构
[1] Beijing Inst Petrochem Technol, Sch Mech Engn, Beijing 102617, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Mech Engn, Xian, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
direct steam generation; numerical analysis; optimal design; solar power plant; thermal energy storage; PHASE-CHANGE MATERIALS; PERFORMANCE; PCM; EXCHANGER; SYSTEM; ECCENTRICITY; CONVECTION; PARAMETERS; BEHAVIOR; DESIGN;
D O I
10.1002/ese3.1323
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A two-dimensional model of the charging process on a heat storage unit in a shell-and-tube type latent heat subsystem of a solar power plant with direct steam generation was constructed in this study. The effects of the outer diameter to inner diameter ratio, aspect ratio, phase change material (PCM) thermal conductivity, and heat transfer fluid (HTF) mass flow rate were investigated. Results show that increasing the PCM thermal conductivity, HTF mass flow rate, and aspect ratio of the heat storage unit can shorten heat storage time, but the ratio of the outer diameter to the inner diameter of the heat storage unit has an optimal value of 6 in this problem. Using response surface methodology analysis, the influence of the aspect ratio, outer-to-inner-diameter ratio, PCM thermal conductivity, and HTF mass flow rate on the storage time of the phase change heat storage unit is in descending order. After a genetic algorithm optimization, the storage rate of the heat storage unit increased by 35%. The results of this study can guide the heat storage unit to achieve a better practical application performance.
引用
收藏
页码:206 / 226
页数:21
相关论文
共 50 条
  • [21] NUMERICAL ANALYSIS OF CHARGING PROCESS OF A SHELL AND TUBE LATENT HEAT THERMAL ENERGY STORAGE SYSTEM WITH PCM EMBEDDED IN HIGHLY CONDUCTIVE POROUS MATERIAL
    Mahdavi, Mahboobe
    Tiari, Saeed
    Sawyer, Carley
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2019, VOL 6, 2019,
  • [22] Study on the energy charging process of a plate-type latent heat thermal energy storage unit and optimization using Taguchi method
    Sun, Xiaoqin
    Mo, Yajing
    Li, Jie
    Chu, Youhong
    Liu, Lihui
    Liao, Shuguang
    APPLIED THERMAL ENGINEERING, 2020, 164 (164)
  • [23] Experimental study on the melting and solidification behavior of erythritol in a vertical shell-and-tube latent heat thermal storage unit
    Wang, Yifei
    Wang, Liang
    Xie, Ningning
    Lin, Xipeng
    Chen, Haisheng
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 99 : 770 - 781
  • [24] Parametric study on melting process of a shell-and-tube latent thermal energy storage under fluctuating thermal conditions
    Li, Zhi
    Lu, Yiji
    Huang, Rui
    Wang, Lei
    Jiang, Ruicheng
    Yu, Xiaonan
    Yu, Xiaoli
    APPLIED THERMAL ENGINEERING, 2020, 180
  • [25] Numerical analysis of the influence of geometry parameters on charging and discharging performance of shell-and-tube latent thermal energy storage with longitudinal fins
    Kirincic, Mateo
    Trp, Anica
    Lenic, Kristian
    Torbarina, Fran
    APPLIED THERMAL ENGINEERING, 2024, 236
  • [26] The error of neglecting natural convection in high temperature vertical shell-and-tube latent heat thermal energy storage systems
    Tehrani, S. Saeed Mostafavi
    Diarce, Gonzalo
    Taylor, Robert A.
    SOLAR ENERGY, 2018, 174 : 489 - 501
  • [27] Numerical investigation of a shell-and-tube latent heat thermal energy storage system for urban heating network
    Lamrani, Bilal
    Kousksou, Tarik
    JOURNAL OF ENERGY STORAGE, 2021, 43
  • [28] Study on heat transfer enhancement of horizontal shell-and-tube latent heat thermal energy storage unit
    Hu Z.
    Sun Z.
    Meng E.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2021, 42 (03): : 450 - 455
  • [29] Effect of the circumferential and radial graded metal foam on horizontal shell-and-tube latent heat thermal energy storage unit
    Yang, Chao
    Xu, Yang
    Cai, Xiao
    Zheng, Zhang-Jing
    SOLAR ENERGY, 2021, 226 : 225 - 235
  • [30] Effects of shell modifications and operational parameters on melting uniformity of a vertical multi-section shell-and-tube latent heat thermal energy storage unit
    Chen, Lanxin
    Fan, Aiwu
    JOURNAL OF ENERGY STORAGE, 2022, 55