Numerical analysis and optimization of the charging process on a shell-and-tube latent heat thermal energy storage unit for a solar power plant with direct steam generation

被引:3
|
作者
Deng, Yajun [1 ]
Zhu, Zhengyue [1 ]
Wang, Wenzhao [1 ]
Ye, Qianhao [2 ]
Yu, Bo [1 ]
Sun, Dongliang [1 ]
机构
[1] Beijing Inst Petrochem Technol, Sch Mech Engn, Beijing 102617, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Mech Engn, Xian, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
direct steam generation; numerical analysis; optimal design; solar power plant; thermal energy storage; PHASE-CHANGE MATERIALS; PERFORMANCE; PCM; EXCHANGER; SYSTEM; ECCENTRICITY; CONVECTION; PARAMETERS; BEHAVIOR; DESIGN;
D O I
10.1002/ese3.1323
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A two-dimensional model of the charging process on a heat storage unit in a shell-and-tube type latent heat subsystem of a solar power plant with direct steam generation was constructed in this study. The effects of the outer diameter to inner diameter ratio, aspect ratio, phase change material (PCM) thermal conductivity, and heat transfer fluid (HTF) mass flow rate were investigated. Results show that increasing the PCM thermal conductivity, HTF mass flow rate, and aspect ratio of the heat storage unit can shorten heat storage time, but the ratio of the outer diameter to the inner diameter of the heat storage unit has an optimal value of 6 in this problem. Using response surface methodology analysis, the influence of the aspect ratio, outer-to-inner-diameter ratio, PCM thermal conductivity, and HTF mass flow rate on the storage time of the phase change heat storage unit is in descending order. After a genetic algorithm optimization, the storage rate of the heat storage unit increased by 35%. The results of this study can guide the heat storage unit to achieve a better practical application performance.
引用
收藏
页码:206 / 226
页数:21
相关论文
共 50 条
  • [1] CFD analysis of melting process in a shell-and-tube latent heat storage for concentrated solar power plants
    Fornarelli, F.
    Camporeale, S. M.
    Fortunato, B.
    Torresi, M.
    Oresta, P.
    Magliocchetti, L.
    Miliozzi, A.
    Santo, G.
    APPLIED ENERGY, 2016, 164 : 711 - 722
  • [2] Experimental study on the effect of rotation on melting performance of shell-and-tube latent heat thermal energy storage unit
    Yang, Chao
    Zheng, Zhang-Jing
    Cai, Xiao
    Xu, Yang
    APPLIED THERMAL ENGINEERING, 2022, 215
  • [3] Analytical solution of heat transfer in a shell-and-tube latent thermal energy storage system
    Bechiri, Mohammed
    Mansouri, Kacem
    RENEWABLE ENERGY, 2015, 74 : 825 - 838
  • [4] Fast calculation of latent heat storage process in the direct steam generation solar thermal power system using a POD reduced-order model
    Ye, Qianhao
    Deng, Yajun
    Li, Tingyu
    Yu, Bo
    Sun, Dongliang
    Wei, Jinjia
    SOLAR ENERGY, 2021, 227 : 541 - 556
  • [5] Numerical Study of a Shell-and-Tube Latent Thermal Energy Storage Unit Heated by Laminar Pulsed Fluid Flow
    Elbahjaoui, Radouane
    El Qarnia, Hamid
    HEAT TRANSFER ENGINEERING, 2017, 38 (17) : 1466 - 1480
  • [6] A combined heat transfer enhancement technique for shell-and-tube latent heat thermal energy storage
    Woloszyn, Jerzy
    Szopa, Krystian
    RENEWABLE ENERGY, 2023, 202 : 1342 - 1356
  • [7] Effects of fluctuating thermal sources on a shell-and-tube latent thermal energy storage during charging process
    Li, Zhi
    Yu, Xiaoli
    Wang, Lei
    Lu, Yiji
    Huang, Rui
    Chang, Jinwei
    Jiang, Ruicheng
    ENERGY, 2020, 199
  • [8] Experimental and numerical analysis of a phase change material-based shell-and-tube heat exchanger for cold thermal energy storage
    Fragnito, Andrea
    Bianco, Nicola
    Iasiello, Marcello
    Mauro, Gerardo Maria
    Mongibello, Luigi
    JOURNAL OF ENERGY STORAGE, 2022, 56
  • [9] Eccentricity optimization of a horizontal shell-and-tube latent-heat thermal energy storage unit based on melting and melting-solidifying performance
    Zheng, Zhang-Jing
    Xu, Yang
    Li, Ming-Jia
    APPLIED ENERGY, 2018, 220 : 447 - 454
  • [10] A Periodic Horizontal Shell-And-Tube Structure as an Efficient Latent Heat Thermal Energy Storage Unit
    Woloszyn, Jerzy
    Szopa, Krystian
    ENERGIES, 2024, 17 (22)