Label-free enrichment of human pluripotent stem cell-derived early retinal progenitor cells for cell-based regenerative therapies

被引:2
|
作者
Iwama, Yasuaki [1 ,2 ,3 ,4 ]
Nomaru, Hiroko [5 ]
Masuda, Tomohiro [1 ,2 ,3 ]
Kawamura, Yoko [5 ]
Matsumura, Michiru [1 ,2 ]
Murata, Yuri [5 ]
Teranishi, Kazuki [5 ]
Nishida, Kohji [4 ]
Ota, Sadao [5 ,6 ]
Mandai, Michiko [1 ,2 ]
Takahashi, Masayo [1 ,2 ]
机构
[1] RIKEN, Ctr Biosyst Dynam Res, Lab Retinal Regenerat, Kobe, Hyogo 6500047, Japan
[2] Kobe City Eye Hosp, Dept Ophthalmol, Kobe, Hyogo 6500047, Japan
[3] RIKEN, Cell & Gene Therapy Ophthalmol Lab, BZP, Wako, Saitama 3510198, Japan
[4] Osaka Univ, Grad Sch Med, Dept Ophthalmol, Suita, Osaka 5650871, Japan
[5] ThinkCyte KK, Tokyo 1138654, Japan
[6] Univ Tokyo, Res Ctr Adv Sci & Technol, Tokyo 1538904, Japan
来源
STEM CELL REPORTS | 2024年 / 19卷 / 02期
关键词
TRANSPLANTATION; DEGENERATION; RESTORATION; VISION; SHEETS;
D O I
10.1016/j.stemcr.2023.12.001
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Pluripotent stem cell-based therapy for retinal degenerative diseases is a promising approach to restoring visual function. A clinical study using retinal organoid (RO) sheets was recently conducted in patients with retinitis pigmentosa. However, the graft preparation currently requires advanced skills to identify and excise suitable segments from the transplantable area of the limited number of suitable ROs. This remains a challenge for consistent clinical implementations. Herein, we enabled the enrichment of wild-type (non-reporter) retinal progenitor cells (RPCs) from dissociated ROs using a label-free ghost cytometry (LF-GC)-based sorting system, where a machine-based classifier was trained in advance with another RPC reporter line. The sorted cells reproducibly formed retinal spheroids large enough for transplantation and developed mature photoreceptors in the retinal degeneration rats. This method of enriching early RPCs with no specific surface antigens and without any reporters or chemical labeling is promising for robust preparation of graft tissues during cell-based therapy.
引用
收藏
页码:254 / 269
页数:16
相关论文
共 50 条
  • [21] Effect of Cell Spreading on Rosette Formation by Human Pluripotent Stem Cell-Derived Neural Progenitor Cells
    Townshend, Ryan F.
    Shao, Yue
    Wang, Sicong
    Cortez, Chari L.
    Esfahani, Sajedeh Nasr
    Spence, Jason R.
    O'Shea, K. Sue
    Fu, Jianping
    Gumucio, Deborah L.
    Taniguchi, Kenichiro
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2020, 8
  • [22] Xenogen-free In Vitro Differentiation and Expansion of Human Pluripotent Stem Cell-Derived Cardiovascular Progenitor Cells
    Meng Xianmei
    Knopf, Anne
    Vega-Crespo, Agustin
    Byrne, James
    Van Handel, Ben
    Nsair, Ali
    CIRCULATION RESEARCH, 2014, 115
  • [23] Clinically compliant enrichment of human pluripotent stem cell-derived islets
    Rajaei, Bahareh
    Garcia, Amadeo Munoz
    Juksar, Juri
    Doppenberg, Jason B.
    Paz-Barba, Miriam
    Boot, Fransje
    de Vos, Willemijn
    Mulder, Aat A.
    Lambregtse, Ferdy
    Daleman, Lizanne
    de Leeuw, Anne E.
    Nieveen, Maaike C.
    Engelse, Marten A.
    Rabelink, Ton
    de Koning, Eelco J. P.
    Carlotti, Francoise
    SCIENCE TRANSLATIONAL MEDICINE, 2025, 17 (792)
  • [24] A selective cytotoxic adenovirus vector for concentration of pluripotent stem cells in human pluripotent stem cell-derived neural progenitor cells
    Hirai, Takamasa
    Kono, Ken
    Sawada, Rumi
    Kuroda, Takuya
    Yasuda, Satoshi
    Matsuyama, Satoko
    Matsuyama, Akifumi
    Koizumi, Naoya
    Utoguchi, Naoki
    Mizuguchi, Hiroyuki
    Sato, Yoji
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [25] A selective cytotoxic adenovirus vector for concentration of pluripotent stem cells in human pluripotent stem cell-derived neural progenitor cells
    Takamasa Hirai
    Ken Kono
    Rumi Sawada
    Takuya Kuroda
    Satoshi Yasuda
    Satoko Matsuyama
    Akifumi Matsuyama
    Naoya Koizumi
    Naoki Utoguchi
    Hiroyuki Mizuguchi
    Yoji Sato
    Scientific Reports, 11
  • [26] Human pluripotent stem cell-derived insulin-producing cells: A regenerative medicine perspective
    Migliorini, Adriana
    Nostro, Maria Cristina
    Sneddon, Julie B.
    CELL METABOLISM, 2021, 33 (04) : 721 - 731
  • [27] ASSESSMENT OF TUMORIGENIC POTENTIAL OF HUMAN INDUCED PLURIPOTENT STEM CELL-DERIVED NEURAL STEM/PROGENITOR CELLS
    Iida, Tsuyoshi
    Iwanami, Akio
    Kohyama, Jun
    Nagoshi, Narihito
    Matsumoto, Morio
    Okano, Hideyuki
    Nakamura, Masaya
    NEURO-ONCOLOGY, 2016, 18 : 184 - 184
  • [28] Human Pluripotent Stem Cell-Derived Cardiac Tissue Patch for Use in Cell-Based Cardiac Therapy
    Shadrin, Ilya Y.
    Carlson, Aaron L.
    Bursac, Nenad
    MOLECULAR THERAPY, 2014, 22 : S206 - S206
  • [29] Label-free electrophysiological cytometry for stem cell-derived cardiomyocyte clusters
    Myers, Frank B.
    Zarins, Christopher K.
    Abilez, Oscar J.
    Lee, Luke P.
    LAB ON A CHIP, 2013, 13 (02) : 220 - 228
  • [30] Label-free identification and characterization of human pluripotent stem cell-derived cardiomyocytes using second harmonic generation (SHG) microscopy
    Awasthi, Samir
    Matthews, Dennis L.
    Li, Ronald A.
    Chiamvimonvat, Nipavan
    Lieu, Deborah K.
    Chan, James W.
    JOURNAL OF BIOPHOTONICS, 2012, 5 (01) : 57 - 66