Effect of Manganese on the Strength-Toughness Relationship of Low-Carbon Copper and Nickel-Containing Hull Steel

被引:5
|
作者
Zhan, Zhide [1 ,2 ]
Shi, Zhongran [2 ]
Wang, Zemin [1 ]
Lu, Wenjing [1 ]
Chen, Zuoning [2 ,3 ]
Zhang, Dian [2 ]
Chai, Feng [2 ]
Luo, Xiaobing [2 ]
机构
[1] Shanghai Inst Technol, Sch Mat Sci & Engn, 100 Haiquan Rd, Shanghai 201418, Peoples R China
[2] Cent Iron & Steel Res Inst, Inst Struct Steels, Beijing 100081, Peoples R China
[3] Wuhan Univ Sci & Technol, State Key Lab Refractories & M1, State Key Lab Refractories & Met, Wuhan 430081, Peoples R China
关键词
reversed austenite; tempering; deformation twin; mechanical properties; RETAINED AUSTENITE; MECHANICAL-PROPERTIES; PROPERTY RELATIONSHIP; REVERSED AUSTENITE; STABILITY; MN; DUCTILITY; BEHAVIOR; TENSILE; MICROSTRUCTURE;
D O I
10.3390/ma17051012
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The influence of varying the manganese (Mn) contents of high-strength copper-containing hull steel on its microstructural evolution and mechanical properties was investigated. With increasing Mn content from 2 to 5%, the tensile strength of the steel increased by similar to 100 MPa, while the elongation of steel remained at similar to 23.5%, indicating good plasticity. However, the 2Mn sample had 128 J higher low-temperature (-84 degrees C) impact work than the 5Mn sample. The microstructures of different Mn steels were composed of fresh martensite (FM), ferrite/tempered martensite (F/TM), and reversed austenite (RA). The increase in Mn content markedly increased the presence of RA and intensified the work hardening caused by the transformation-induced plasticity (TRIP) effect during the tensile process. However, as the phase transformation in different Mn steels occurred in the early stage of strain and did not extend throughout the entire plastic deformation process, increasing plasticity via phase transformation was difficult. In addition, although the volume fraction of RA increased significantly in 4Mn and 5Mn steels, the stability of RA significantly decreased. The presence of numerous metastable blocks and coarse lath-like RA contributed little to low-temperature impact work and was even detrimental to toughness. The substantial fresh martensite resulting from phase transformation facilitated microcrack generation, owing to rapid volume expansion and mutual impacts, thus reducing the work required for crack formation. Additionally, the abundance of deformation twins significantly reduced the work needed for crack propagation. These combined actions significantly reduced the low-temperature toughness of 4Mn and 5Mn steels.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] High strength-toughness combination of a low-carbon medium-manganese steel plate with laminated microstructure and retained austenite
    Zou, Y.
    Xu, Y. B.
    Hu, Z. P.
    Chen, S. Q.
    Han, D. T.
    Misra, R. D. K.
    Wang, G. Z.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 707 : 270 - 279
  • [2] Understanding the Role of Copper Addition in Low-Temperature Toughness of Low-Carbon, High-Strength Steel
    Xi, Xiaohui
    Wang, Jinliang
    Chen, Liqing
    Wang, Zhaodong
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2019, 50 (12): : 5627 - 5639
  • [3] New strategy to simultaneously improve strength-toughness balance for low-carbon ultrastrong steel by multi-step heat treatment process
    Yang, Xiaocong
    Li, Chengning
    Wang, Jingsong
    Wang, Jiamei
    Ba, Lingzhi
    Wang, Ce
    Duan, Qiyue
    Ju, Yuezhang
    Di, Xinjie
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 914
  • [4] Ce addition enabling superior strength and ductility combination of a low-carbon low-manganese transformation-induced plasticity steel
    Yin, T. W.
    Shen, Y. F.
    Xue, W. Y.
    Jia, N.
    Zuo, L.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 849
  • [5] Enhanced Strength and Toughness of Low-Carbon Bainitic Steel by Refining Prior Austenite Grains and Austempering Below Ms
    Yao, Chunxia
    Lan, Huifang
    Tao, Zhen
    Misra, Raja Devesh Kumar
    Du, Linxiu
    STEEL RESEARCH INTERNATIONAL, 2021, 92 (11)
  • [6] Effect of rare earths on impact toughness of a low-carbon steel
    Liu, Hong-Liang
    Liu, Cheng-Jun
    Jiang, Mao-Fa
    MATERIALS & DESIGN, 2012, 33 : 306 - 312
  • [7] Dominating Role of Film-Like Carbon-Enriched Austenite for the Simultaneous Improvement of Strength and Toughness in Low-Carbon Steel
    Yang, Kai
    Ding, Wei
    Liu, Shilong
    Li, Wei
    Jin, Xuejun
    STEEL RESEARCH INTERNATIONAL, 2021, 92 (02)
  • [8] The effects of hydrogen on dynamic fracture toughness of high-strength low-carbon medium manganese steel
    Du, Y.
    Gao, X. H.
    Wang, X. N.
    Dong, Y.
    Zhang, B.
    Wu, H. Y.
    Sun, C.
    Du, L. X.
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2023, 124
  • [9] Effect of microstructural constituents on strength-toughness combination in a low carbon bainitic steel
    Lan, H. F.
    Du, L. X.
    Misra, R. D. K.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 611 : 194 - 200
  • [10] Austenite stability and its effect on the toughness of a high strength ultra-low carbon medium manganese steel plate
    Zou, Y.
    Xu, Y. B.
    Hu, Z. P.
    Gu, X. L.
    Peng, F.
    Tan, X. D.
    Chen, S. Q.
    Han, D. T.
    Misra, R. D. K.
    Wang, G. D.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 675 : 153 - 163