Unified Model Based on Reinforced Feature Reconstruction for Metro Track Anomaly Detection

被引:3
作者
Duan, Mengfei [1 ]
Mao, Liang [2 ]
Liu, Ruikang [1 ]
Liu, Weiming [1 ]
Liu, Zhongbin [3 ]
机构
[1] South China Univ Technol, Sch Civil Engn & Transportat, Guangzhou 510641, Peoples R China
[2] Guangdong Pearl River Delta Interc Railway Co Ltd, Guangzhou 510000, Peoples R China
[3] Guangdong Interc Railway Operat Co Ltd, Guangzhou 510000, Peoples R China
关键词
Image reconstruction; Feature extraction; Anomaly detection; Training; Data models; Task analysis; Sensors; feature reconstruction; feature reinforcement; metro track; unified model;
D O I
10.1109/JSEN.2023.3348118
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Metro track anomaly detection can prevent accidents, thus avoiding severe life safety and property losses. Unsupervised methods that rely on one model per category or scene are unsuitable for complex and diverse track environments and unified detection, exhibiting poor stability. For most feature-based methods, the multistage features extracted by the pretrained model contain the redundant information and noise, which interferes the feature reconstruction and anomaly detection. Additionally, the presence of abnormal information in the reconstructed feature further degrades the performance of anomaly detection. To address the aforementioned issues, a unified anomaly detection model based on feature reconstruction, named reinforced feature reconstruction-based anomaly detection network (RFReconAD), is proposed. The proposed efficient channel feature reinforcement (ECFR) module cooperated with the designed loss function weakens the interference of redundant information and noise on feature reconstruction task. The layer-wise learnable queries embedded in the decoder alleviate the problem of anomaly reconstruction. Moreover, the proposed detection scheme achieves more accurate anomaly detection. Under unified training and inference, our method achieves 99.8% and 98.2% image-level AUROC, as well as 99.2% and 97.2% pixel-level AUROC, on the track foreign object detection (TFOD) dataset and MVTec-AD dataset, respectively; and its inference speed reaches 37 frames/s, outperforming the state-of-the-art methods.
引用
收藏
页码:5025 / 5038
页数:14
相关论文
共 54 条
[1]   Skip-GANomaly: Skip Connected and Adversarially Trained Encoder-Decoder Anomaly Detection [J].
Akcay, Samet ;
Atapour-Abarghouei, Amir ;
Breckon, Toby P. .
2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
[2]   GANomaly: Semi-supervised Anomaly Detection via Adversarial Training [J].
Akcay, Samet ;
Atapour-Abarghouei, Amir ;
Breckon, Toby P. .
COMPUTER VISION - ACCV 2018, PT III, 2019, 11363 :622-637
[3]  
An J., 2015, Spec. Lecture IE, V2, P1
[4]  
Bae J, 2023, Arxiv, DOI arXiv:2211.12634
[5]   Uninformed Students: Student-Teacher Anomaly Detection with Discriminative Latent Embeddings [J].
Bergmann, Paul ;
Fauser, Michael ;
Sattlegger, David ;
Steger, Carsten .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, :4182-4191
[6]   MVTec AD - A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection [J].
Bergmann, Paul ;
Fauser, Michael ;
Sattlegger, David ;
Steger, Carsten .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :9584-9592
[7]   End-to-End Object Detection with Transformers [J].
Carion, Nicolas ;
Massa, Francisco ;
Synnaeve, Gabriel ;
Usunier, Nicolas ;
Kirillov, Alexander ;
Zagoruyko, Sergey .
COMPUTER VISION - ECCV 2020, PT I, 2020, 12346 :213-229
[8]  
Chen ZM, 2018, WIREL TELECOMM SYMP
[9]  
Cohen N, 2021, Arxiv, DOI arXiv:2005.02357
[10]  
Defard Thomas, 2021, Pattern Recognition. ICPR International Workshops and Challenges. Proceedings. Lecture Notes in Computer Science (LNCS 12664), P475, DOI 10.1007/978-3-030-68799-1_35