No-Reference Quality Metrics for Image Decolorization

被引:5
|
作者
Ayunts, Hrach [1 ]
Agaian, Sos [2 ]
机构
[1] Yerevan State Univ, Informat & Appl Math Dept, Yerevan 0025, Armenia
[2] CUNY, Grad Ctr, New York, NY 10314 USA
关键词
Decolorization; image quality metric; grayscale; color-to-gray conversion; COLOR IMAGE; CONTRAST;
D O I
10.1109/TCE.2023.3325744
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Evaluating the visual quality of decolorized images is challenging, as existing metrics such as CCPR and E-score depend on parameters that may vary across different methods. In this study, we propose novel no-reference quality metrics for image decolorization that are non-parametric, robust, and perceptually relevant. Our main contributions are: 1. We develop TIA and WTIA quality metrics that measure the preservation of salient image regions after decolorization. 2. We propose an image-dependent optimal decolorization method that uses TIA/WTIA metrics to adjust the decolorization parameters. 3. We conduct extensive experiments to show that our method produces better-decolorized images than state-of-the-art methods and that our metrics have a high correlation with subjective ratings from human observers.
引用
收藏
页码:1177 / 1185
页数:9
相关论文
共 50 条
  • [1] No-Reference image quality metrics for structural MRI
    Jeffrey P. Woodard
    Monica P. Carley-Spencer
    Neuroinformatics, 2006, 4 : 243 - 262
  • [2] No-reference image quality metrics for structural MRI
    Woodard, Jeffrey P.
    Carley-Spencer, Monica P.
    NEUROINFORMATICS, 2006, 4 (03) : 243 - 262
  • [3] Image Tampering Detection Using No-Reference Image Quality Metrics
    Ying Li
    Bo Wang
    Xiang-Wei Kong
    Yan-Qing Guo
    Journal of Harbin Institute of Technology(New series), 2014, (06) : 51 - 56
  • [4] Image tampering detection using no-reference image quality metrics
    Li, Ying
    Wang, Bo
    Kong, Xiang-Wei
    Guo, Yan-Qing
    Journal of Harbin Institute of Technology (New Series), 2014, 21 (06) : 51 - 56
  • [5] Image forgery detection by means of No-Reference quality metrics
    Battisti, F.
    Carli, M.
    Neri, A.
    MEDIA WATERMARKING, SECURITY, AND FORENSICS 2012, 2012, 8303
  • [6] No-reference image quality metrics for color domain modified images
    Khan, Muhammad Usman
    Luo, Ming Ronnier
    Tian, Dalin
    Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2022, 39 (06):
  • [7] No-reference image quality metrics for color domain modified images
    Khan, Muhammad Usman
    Luo, Ming Ronnier
    Tian, Dalin
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2022, 39 (06) : B65 - B77
  • [8] On Verification of Blur and Sharpness Metrics for No-reference Image Visual Quality Assessment
    Bahnemiri, Sheyda Ghanbaralizadeh
    Ponomarenko, Mykola
    Egiazarian, Karen
    2020 IEEE 22ND INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2020,
  • [9] Performance evaluation of no-reference image quality metrics for face biometric images
    Liu, Xinwei
    Pedersen, Marius
    Charrier, Christophe
    Bours, Patrick
    JOURNAL OF ELECTRONIC IMAGING, 2018, 27 (02)
  • [10] CAN NO-REFERENCE IMAGE QUALITY METRICS ASSESS VISIBLE WAVELENGTH IRIS SAMPLE QUALITY?
    Liu, Xinwei
    Pedersen, Marius
    Charrier, Christophe
    Bours, Patrick
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 3530 - 3534