Application of PET imaging delta radiomics for predicting progression-free survival in rare high-grade glioma

被引:3
作者
Ahrari, Shamimeh [1 ,2 ]
Zaragori, Timothee [1 ,2 ]
Zinsz, Adeline [3 ]
Oster, Julien [1 ]
Imbert, Laetitia [1 ,2 ,3 ]
Verger, Antoine [1 ,2 ,3 ]
机构
[1] Univ Lorraine, Inst Natl Sante & Rech Med, Imagerie Adaptat Diagnost & Intervent, U1254, F-54000 Nancy, France
[2] Univ Lorraine, Nancyclotep Imaging Platform, F-54000 Nancy, France
[3] Univ Nancy, Ctr Hosp Reg, Dept Nucl Med, F-54000 Nancy, France
关键词
CENTRAL-NERVOUS-SYSTEM; FEATURES; CLASSIFICATION; GLIOBLASTOMA; RECURRENCE; DISCOVERY; CONSENSUS; CRITERIA; OUTCOMES; TUMORS;
D O I
10.1038/s41598-024-53693-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study assesses the feasibility of using a sample-efficient model to investigate radiomics changes over time for predicting progression-free survival in rare diseases. Eighteen high-grade glioma patients underwent two L-3,4-dihydroxy-6-[F-18]-fluoro-phenylalanine positron emission tomography (PET) dynamic scans: the first during treatment and the second at temozolomide chemotherapy discontinuation. Radiomics features from static/dynamic parametric images, alongside conventional features, were extracted. After excluding highly correlated features, 16 different models were trained by combining various feature selection methods and time-to-event survival algorithms. Performance was assessed using cross-validation. To evaluate model robustness, an additional dataset including 35 patients with a single PET scan at therapy discontinuation was used. Model performance was compared with a strategy extracting informative features from the set of 35 patients and applying them to the 18 patients with 2 PET scans. Delta-absolute radiomics achieved the highest performance when the pipeline was directly applied to the 18-patient subset (support vector machine (SVM) and recursive feature elimination (RFE): C-index = 0.783 [0.744-0.818]). This result remained consistent when transferring informative features from 35 patients (SVM + RFE: C-index = 0.751 [0.716-0.784], p = 0.06). In addition, it significantly outperformed delta-absolute conventional (C-index = 0.584 [0.548-0.620], p < 0.001) and single-time-point radiomics features (C-index = 0.546 [0.512-0.580], p < 0.001), highlighting the considerable potential of delta radiomics in rare cancer cohorts.
引用
收藏
页数:12
相关论文
共 50 条
[41]   Multiparametric MRI-based fusion radiomics for predicting telomerase reverse transcriptase (TERT) promoter mutations and progression-free survival in glioblastoma: a multicentre study [J].
Hongbo Zhang ;
Hanwen Zhang ;
Yuze Zhang ;
Beibei Zhou ;
Lei Wu ;
Wanqun Yang ;
Yi Lei ;
Biao Huang .
Neuroradiology, 2024, 66 :81-92
[42]   Development and Validation of a CT-Based Radiomics Nomogram for Predicting Postoperative Progression-Free Survival in Stage I-III Renal Cell Carcinoma [J].
Zhang, Haijie ;
Yin, Fu ;
Chen, Menglin ;
Yang, Liyang ;
Qi, Anqi ;
Cui, Weiwei ;
Yang, Shanshan ;
Wen, Ge .
FRONTIERS IN ONCOLOGY, 2022, 11
[43]   Nomograms for Predicting the Overall and Cancer-Specific Survival of Patients with High-Grade Glioma: A Surveillance, Epidemiology, and End Results Study [J].
Xia, Yuhan ;
Liao, Weixin ;
Huang, Shaozhuo ;
Liu, Zhicheng ;
Huang, Xiaowen ;
Yang, Chen ;
Ye, Chao ;
Jiang, Yingjie ;
Wang, Jun .
TURKISH NEUROSURGERY, 2020, 30 (01) :48-59
[44]   A Systematic Review of Amino Acid PET Imaging in Adult-Type High-Grade Glioma Surgery: A Neurosurgeon's Perspective [J].
De Marco, Raffaele ;
Pesaresi, Alessandro ;
Bianconi, Andrea ;
Zotta, Michela ;
Deandreis, Desiree ;
Morana, Giovanni ;
Zeppa, Pietro ;
Melcarne, Antonio ;
Garbossa, Diego ;
Cofano, Fabio .
CANCERS, 2023, 15 (01)
[45]   The utility of arterial spin labeling imaging for predicting prognosis after a recurrence of high-grade glioma in patients under bevacizumab treatment [J].
Kambe, Atsushi ;
Kitao, Shinichiro ;
Ochiai, Ryoya ;
Hosoya, Tomohiro ;
Fujii, Shinya ;
Kurosaki, Masamichi .
JOURNAL OF NEURO-ONCOLOGY, 2024, 166 (01) :175-183
[46]   A Comparison Study of Machine Learning (Random Survival Forest) and Classic Statistic (Cox Proportional Hazards) for Predicting Progression in High-Grade Glioma after Proton and Carbon Ion Radiotherapy [J].
Qiu, Xianxin ;
Gao, Jing ;
Yang, Jing ;
Hu, Jiyi ;
Hu, Weixu ;
Kong, Lin ;
Lu, Jiade J. .
FRONTIERS IN ONCOLOGY, 2020, 10
[47]   Relaxation-compensated amide proton transfer (APT) MRI signal intensity is associated with survival and progression in high-grade glioma patients [J].
Daniel Paech ;
Constantin Dreher ;
Sebastian Regnery ;
Jan-Eric Meissner ;
Steffen Goerke ;
Johannes Windschuh ;
Johanna Oberhollenzer ;
Miriam Schultheiss ;
Katerina Deike-Hofmann ;
Sebastian Bickelhaupt ;
Alexander Radbruch ;
Moritz Zaiss ;
Andreas Unterberg ;
Wolfgang Wick ;
Martin Bendszus ;
Peter Bachert ;
Mark E. Ladd ;
Heinz-Peter Schlemmer .
European Radiology, 2019, 29 :4957-4967
[48]   Predicting the progression-free survival of gastrointestinal stromal tumors after imatinib therapy through multi-sequence magnetic resonance imaging [J].
Yang, Linsha ;
Zhang, Duo ;
Zheng, Tao ;
Liu, Defeng ;
Fang, Yuan .
ABDOMINAL RADIOLOGY, 2024, 49 (03) :801-813
[49]   Differentiating high-grade glioma progression from treatment-related changes with dynamic [18F]FDOPA PET: a multicentric study [J].
Rozenblum, Laura ;
Zaragori, Timothee ;
Tran, Suzanne ;
Morales-Martinez, Andrea ;
Taillandier, Luc ;
Blonski, Marie ;
Rech, Fabien ;
Galanaud, Damien ;
Kas, Aurelie ;
Verger, Antoine .
EUROPEAN RADIOLOGY, 2023, 33 (04) :2548-2560
[50]   Differentiating high-grade glioma progression from treatment-related changes with dynamic [18F]FDOPA PET: a multicentric study [J].
Laura Rozenblum ;
Timothée Zaragori ;
Suzanne Tran ;
Andrea Morales-Martinez ;
Luc Taillandier ;
Marie Blonski ;
Fabien Rech ;
Damien Galanaud ;
Aurélie Kas ;
Antoine Verger .
European Radiology, 2023, 33 :2548-2560