Application of PET imaging delta radiomics for predicting progression-free survival in rare high-grade glioma

被引:3
作者
Ahrari, Shamimeh [1 ,2 ]
Zaragori, Timothee [1 ,2 ]
Zinsz, Adeline [3 ]
Oster, Julien [1 ]
Imbert, Laetitia [1 ,2 ,3 ]
Verger, Antoine [1 ,2 ,3 ]
机构
[1] Univ Lorraine, Inst Natl Sante & Rech Med, Imagerie Adaptat Diagnost & Intervent, U1254, F-54000 Nancy, France
[2] Univ Lorraine, Nancyclotep Imaging Platform, F-54000 Nancy, France
[3] Univ Nancy, Ctr Hosp Reg, Dept Nucl Med, F-54000 Nancy, France
关键词
CENTRAL-NERVOUS-SYSTEM; FEATURES; CLASSIFICATION; GLIOBLASTOMA; RECURRENCE; DISCOVERY; CONSENSUS; CRITERIA; OUTCOMES; TUMORS;
D O I
10.1038/s41598-024-53693-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study assesses the feasibility of using a sample-efficient model to investigate radiomics changes over time for predicting progression-free survival in rare diseases. Eighteen high-grade glioma patients underwent two L-3,4-dihydroxy-6-[F-18]-fluoro-phenylalanine positron emission tomography (PET) dynamic scans: the first during treatment and the second at temozolomide chemotherapy discontinuation. Radiomics features from static/dynamic parametric images, alongside conventional features, were extracted. After excluding highly correlated features, 16 different models were trained by combining various feature selection methods and time-to-event survival algorithms. Performance was assessed using cross-validation. To evaluate model robustness, an additional dataset including 35 patients with a single PET scan at therapy discontinuation was used. Model performance was compared with a strategy extracting informative features from the set of 35 patients and applying them to the 18 patients with 2 PET scans. Delta-absolute radiomics achieved the highest performance when the pipeline was directly applied to the 18-patient subset (support vector machine (SVM) and recursive feature elimination (RFE): C-index = 0.783 [0.744-0.818]). This result remained consistent when transferring informative features from 35 patients (SVM + RFE: C-index = 0.751 [0.716-0.784], p = 0.06). In addition, it significantly outperformed delta-absolute conventional (C-index = 0.584 [0.548-0.620], p < 0.001) and single-time-point radiomics features (C-index = 0.546 [0.512-0.580], p < 0.001), highlighting the considerable potential of delta radiomics in rare cancer cohorts.
引用
收藏
页数:12
相关论文
共 50 条
[21]   Systematic review and epistemic meta-analysis to advance binomial AI-radiomics integration for predicting high-grade glioma progression and enhancing patient management [J].
Chilaca-Rosas, Maria Fatima ;
Contreras-Aguilar, Manuel Tadeo ;
Pallach-Loose, Federico ;
Altamirano-Bustamante, Nelly F. ;
Salazar-Calderon, David Rafael ;
Revilla-Monsalve, Cristina ;
Heredia-Gutierrez, Juan Carlos ;
Conde-Castro, Benjamin ;
Medrano-Guzman, Rafael ;
Altamirano-Bustamante, Myriam M. .
SCIENTIFIC REPORTS, 2025, 15 (01)
[22]   Role of modeled high-grade glioma cell invasion and survival on the prediction of tumor progression after radiotherapy [J].
Hager, Wille ;
Toma-Dasu, Iuliana ;
Astaraki, Mehdi ;
Lazzeroni, Marta .
PHYSICS IN MEDICINE AND BIOLOGY, 2025, 70 (06)
[23]   Impact of a modified peritoneal cancer index using FDG-PET/CT (PET-PCI) in predicting tumor grade and progression-free survival in patients with pseudomyxoma peritonei [J].
Hotta, Masatoshi ;
Minamimoto, Ryogo ;
Gohda, Yoshimasa ;
Igari, Toru ;
Yano, Hideaki .
EUROPEAN RADIOLOGY, 2019, 29 (10) :5709-5716
[24]   Germline BRCA2 mutation is associated with greater progression-free survival in korean women with advanced high-grade serous ovarian cancer [J].
Yoo, Ji Geun ;
Lee, Hae Nam ;
Lee, Sung Jong ;
Kim, Jin Hwi ;
Lees, Yong Seok ;
Lee, Ahwon ;
Hur, Soo Young ;
Lee, Keun Ho .
EUROPEAN JOURNAL OF GYNAECOLOGICAL ONCOLOGY, 2020, 41 (05) :675-680
[25]   Application of preoperative fluorodeoxyglucose-PET/CT parameters for predicting prognosis of high-grade neuroendocrine cervical cancer [J].
Song, Changho ;
Lee, Jong Jin ;
Lee, Shin-Hwa ;
Park, Jeong-Yeol ;
Kim, Dae-Yeon ;
Suh, Dae-Shik ;
Kim, Jong-Hyeok ;
Kim, Yong-Man ;
Kim, Ju-Hyun .
NUCLEAR MEDICINE COMMUNICATIONS, 2023, 44 (11) :1005-1010
[26]   Radiomics nomogram for preoperative prediction of progression-free survival using diffusion-weighted imaging in patients with muscle-invasive bladder cancer [J].
Zhang, Shenghai ;
Song, Mengfan ;
Zhao, Yuanshen ;
Xu, Shuaishuai ;
Sun, Qiuchang ;
Zhai, Guangtao ;
Liang, Dong ;
Wu, Guangyu ;
Li, Zhi-Cheng .
EUROPEAN JOURNAL OF RADIOLOGY, 2020, 131
[27]   Predictive value of magnetic resonance imaging radiomics-based machine learning for disease progression in patients with high- grade glioma [J].
Li, Zhibin ;
Chen, Li ;
Song, Ying ;
Dai, Guyu ;
Duan, Lian ;
Luo, Yong ;
Wang, Guangyu ;
Xiao, Qing ;
Li, Guangjun ;
Bai, Sen .
QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2023, 13 (01) :224-236
[28]   Postoperative [68Ga]Ga-DOTA-TATE PET/CT imaging is prognostic for progression-free survival in meningioma WHO grade 1 [J].
Nico Teske ;
Annamaria Biczok ;
Stefanie Quach ;
Franziska J. Dekorsy ;
Robert Forbrig ;
Raphael Bodensohn ;
Maximilian Niyazi ;
Joerg-Christian Tonn ;
Nathalie L. Albert ;
Christian Schichor ;
Moritz Ueberschaer .
European Journal of Nuclear Medicine and Molecular Imaging, 2023, 51 :206-217
[29]   Amide proton transfer imaging might predict survival and IDH mutation status in high-grade glioma [J].
Joo, Bio ;
Han, Kyunghwa ;
Ahn, Sung Soo ;
Choi, Yoon Seong ;
Chang, Jong Hee ;
Kang, Seok-Gu ;
Kim, Se Hoon ;
Zhou, Jinyuan ;
Lee, Seung-Koo .
EUROPEAN RADIOLOGY, 2019, 29 (12) :6643-6652
[30]   Prognostic model using 18F-FDG PET radiomics predicts progression-free survival in relapsed/refractory Hodgkin lymphoma [J].
Driessen, Julia ;
Zwezerijnen, Gerben J. C. ;
Schoeder, Heiko ;
Kersten, Marie Jose ;
Moskowitz, Alison J. ;
Moskowitz, Craig H. ;
Eertink, Jakoba J. ;
Heymans, Martijn W. ;
Boellaard, Ronald ;
Zijlstra, Josee M. .
BLOOD ADVANCES, 2023, 7 (21) :6732-6743