ChIPr: accurate prediction of cohesin-mediated 3D genome organization from 2D chromatin features

被引:3
作者
Abbas, Ahmed [1 ]
Chandratre, Khyati [2 ]
Gao, Yunpeng [1 ]
Yuan, Jiapei [3 ]
Zhang, Michael Q. [2 ]
Mani, Ram S. [1 ,4 ,5 ]
机构
[1] UT Southwestern Med Ctr, Dept Pathol, Dallas, TX 75390 USA
[2] Univ Texas Dallas, Ctr Syst Biol, Dept Biol Sci, Richardson, TX 75080 USA
[3] Chinese Acad Med Sci & Peking Union Med Coll, Inst Hematol & Blood Dis Hosp, Natl Clin Res Ctr Blood Dis, State Key Lab Expt Hematol,Haihe Lab Cell Ecosyst, Tianjin 300020, Peoples R China
[4] UT Southwestern Med Ctr, Dept Urol, Dallas, TX 75390 USA
[5] UT Southwestern Med Ctr, Harold C Simmons Comprehens Canc Ctr, Dallas, TX 75390 USA
关键词
PRINCIPLES; TRANSCRIPTION; ARCHITECTURE; LANDSCAPE; DOMAINS;
D O I
10.1186/s13059-023-03158-7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The three-dimensional genome organization influences diverse nuclear processes. Here we present Chromatin Interaction Predictor (ChIPr), a suite of regression models based on deep neural networks, random forest, and gradient boosting to predict cohesin-mediated chromatin interaction strength between any two loci in the genome. The predictions of ChIPr correlate well with ChIA-PET data in four cell lines. The standard ChIPr model requires three experimental inputs: ChIP-Seq signals for RAD21, H3K27ac, and H3K27me3 but works well with just RAD21 signal. Integrative analysis reveals novel insights into the role of CTCF motif, its orientation, and CTCF binding on cohesin-mediated chromatin interactions.
引用
收藏
页数:27
相关论文
共 54 条
[1]  
Abbas A, 2023, ChIPr: accurate prediction of cohesin-mediated 3D genome organization from 2D chromatin features, DOI [10.5281/zenodo.10364969, DOI 10.5281/ZENODO.10364969]
[2]  
Abbas A., 2023, ChIPr: accurate prediction of cohesin-mediated 3D genome organization from 2D chromatin features
[3]   HiCPlotter integrates genomic data with interaction matrices [J].
Akdemir, Kadir Caner ;
Chin, Lynda .
GENOME BIOLOGY, 2015, 16
[4]   Quantitative prediction of enhancer-promoter interactions [J].
Belokopytova, Polina S. ;
Nuriddinov, Miroslav A. ;
Mozheiko, Evgeniy A. ;
Fishman, Daniil ;
Fishman, Veniamin .
GENOME RESEARCH, 2020, 30 (01) :72-84
[5]  
BISHOP C. M., 2006, PATTERN RECOGN
[6]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[7]   Chromatin interaction neural network (ChINN): a machine learning-based method for predicting chromatin interactions from DNA sequences [J].
Cao, Fan ;
Zhang, Yu ;
Cai, Yichao ;
Animesh, Sambhavi ;
Zhang, Ying ;
Akincilar, Semih Can ;
Loh, Yan Ping ;
Li, Xinya ;
Chng, Wee Joo ;
Tergaonkar, Vinay ;
Kwoh, Chee Keong ;
Fullwood, Melissa J. .
GENOME BIOLOGY, 2021, 22 (01)
[8]   The Encyclopedia of DNA elements (ENCODE): data portal update [J].
Davis, Carrie A. ;
Hitz, Benjamin C. ;
Sloan, Cricket A. ;
Chan, Esther T. ;
Davidson, Jean M. ;
Gabdank, Idan ;
Hilton, Jason A. ;
Jain, Kriti ;
Baymuradov, Ulugbek K. ;
Narayanan, Aditi K. ;
Onate, Kathrina C. ;
Graham, Keenan ;
Miyasato, Stuart R. ;
Dreszer, Timothy R. ;
Strattan, J. Seth ;
Jolanki, Otto ;
Tanaka, Forrest Y. ;
Cherry, J. Michael .
NUCLEIC ACIDS RESEARCH, 2018, 46 (D1) :D794-D801
[9]   Capturing chromosome conformation [J].
Dekker, J ;
Rippe, K ;
Dekker, M ;
Kleckner, N .
SCIENCE, 2002, 295 (5558) :1306-1311
[10]   De novo prediction of human chromosome structures: Epigenetic marking patterns encode genome architecture [J].
Di Pierro, Michele ;
Cheng, Ryan R. ;
Aiden, Erez Lieberman ;
Wolynes, Peter G. ;
Onuchic, Jose N. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (46) :12126-12131