Setanaxib mitigates oxidative damage following retinal ischemia-reperfusion via NOX1 and NOX4 inhibition in retinal ganglion cells

被引:7
作者
Liao, Jing [1 ,2 ,3 ,4 ]
Lai, Zhaoguang [1 ,2 ,3 ,4 ]
Huang, Guangyi [1 ,2 ,3 ,4 ]
Lin, Jiali [1 ,2 ,3 ,4 ]
Huang, Wei [1 ,2 ,3 ,4 ]
Qin, Yuanjun [1 ,2 ,3 ,4 ]
Chen, Qi [1 ,2 ,3 ,4 ]
Hu, Yaguang [6 ]
Cheng, Qiaochu [6 ]
Jiang, Li [1 ,2 ,3 ,4 ]
Cui, Ling [1 ,2 ,3 ,4 ]
Zhong, Haibin [1 ,2 ,3 ,4 ]
Li, Min [1 ,2 ,3 ,4 ]
Wei, Yantao [5 ]
Xu, Fan [1 ,2 ,3 ,4 ]
机构
[1] Guangxi Acad Med Sci, Inst Ophthalm Dis, Nanning 530000, Guangxi, Peoples R China
[2] Peoples Hosp Guangxi Zhuang Autonomous Reg, Dept Ophthalmol, Nanning 530000, Guangxi, Peoples R China
[3] Guangxi Key Lab Eye Hlth, Nanning 530000, Guangxi, Peoples R China
[4] Guangxi Hlth Commiss, Key Lab Ophthalmol & Related Syst Dis Artificial I, Nanning 530000, Guangxi, Peoples R China
[5] Sun Yat Sen Univ, Zhongshan Ophthalm Ctr, State Key Lab Ophthalmol, Guangdong Prov Key Lab Ophthalmol & Visual Sci, 7 Jinsui Rd, Guangzhou 510060, Peoples R China
[6] Xi An Jiao Tong Univ, Affiliated Hosp 1, Dept Ophthalmol, 277 Yanta West Rd, Xian 710061, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Setanaxib; Retinal ischemia-reperfusion; Retinal ganglion cells; NOX1 and NOX4; NADPH OXIDASE 1; APOPTOSIS; DEATH; MECHANISM; GLAUCOMA; FAMILY; LIVER; NRF2; BAX;
D O I
10.1016/j.biopha.2023.116042
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Glaucoma, a prevalent cause of permanent visual impairment worldwide, is characterized by the progressive degeneration of retinal ganglion cells (RGCs). NADPH oxidase (NOX) 1 and NOX4 are pivotal nodes in various retinal diseases. Setanaxib, a potent and highly selective inhibitor of NOX1 and NOX4, can impede the progression of various diseases. This study investigated the efficacy of setanaxib in ameliorating retinal ischemiareperfusion (I/R) injury and elucidated its underlying mechanisms. The model of retinal I/R induced by acute intraocular hypertension and the oxygen-glucose deprivation/reoxygenation (OGD/R) model of primary RGCs were established. By suppressing NOX1 and NOX4 expression in RGCs, setanaxib mitigated I/R-induced retinal neuronal loss, structural disruption, and dysfunction. Setanaxib reduced TUNEL-positive cells, upregulated Bcl-2, and inhibited Bax, Bad, and cleaved-caspase-3 overexpression after I/R injury in vitro and in vivo. Moreover, setanaxib also significantly reduced cellular senescence, as demonstrated by downregulating SA-beta-gal-positive and p16-INK4a expression. Furthermore, setanaxib significantly suppressed ROS production, Hif-1 alpha and FOXO1 upregulation, and NRF2 downregulation in damaged RGCs. These findings highlight that the setanaxib effectively inhibited NOX1 and NOX4, thereby regulating ROS production and redox signal activation. This inhibition further prevents the activation of apoptosis and senescence related factors in RGCs, ultimately protecting them against retinal I/R injury. Consequently, setanaxib exhibits promising potential as a therapeutic intervention for glaucoma.
引用
收藏
页数:16
相关论文
共 19 条
  • [1] Role of NADPH oxidase isoforms NOX1, NOX2 and NOX4 in myocardial ischemia/reperfusion injury
    Braunersreuther, Vincent
    Montecucco, Fabrizio
    Ashri, Mohammed
    Pelli, Graziano
    Galan, Katia
    Frias, Miguel
    Burger, Fabienne
    Gomez Quindere, Ana Luiza
    Montessuit, Christophe
    Krause, Karl-Heinz
    Mach, Francois
    Jaquet, Vincent
    JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2013, 64 : 99 - 107
  • [2] Kruppel-like factor 7 protects retinal ganglion cells and promotes functional preservation via activating the Akt pathway after retinal ischemia-reperfusion injury
    Li, Zongyuan
    Xie, Feijia
    Yang, Ning
    Yang, Jiayi
    Luo, Jinyuan
    Hua, Dihao
    He, Tao
    Xing, Yiqiao
    EXPERIMENTAL EYE RESEARCH, 2021, 207
  • [3] SIRT1 is required for the neuroprotection of resveratrol on retinal ganglion cells after retinal ischemia-reperfusion injury in mice
    Luo, Jinyuan
    He, Tao
    Yang, Jiayi
    Yang, Ning
    Li, Zongyuan
    Xing, Yiqiao
    GRAEFES ARCHIVE FOR CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 2020, 258 (02) : 335 - 344
  • [4] Overexpression of S100A4 protects retinal ganglion cells against retinal ischemia-reperfusion injury in mice
    Yang, Jiayi
    Yang, Ning
    Luo, Jinyuan
    Cheng, Gumeng
    Zhang, Xiao
    He, Tao
    Xing, Yiqiao
    EXPERIMENTAL EYE RESEARCH, 2020, 201
  • [5] CREG Protects Retinal Ganglion Cells loss and Retinal Function Impairment Against ischemia-reperfusion Injury in mice via Akt Signaling Pathway
    Zeng, Siyu
    Du, Lei
    Lu, Guojing
    Xing, Yiqiao
    MOLECULAR NEUROBIOLOGY, 2023, 60 (10) : 6018 - 6028
  • [6] SIRT1 is required for the neuroprotection of resveratrol on retinal ganglion cells after retinal ischemia-reperfusion injury in mice
    Jinyuan Luo
    Tao He
    Jiayi Yang
    Ning Yang
    Zongyuan Li
    Yiqiao Xing
    Graefe's Archive for Clinical and Experimental Ophthalmology, 2020, 258 : 335 - 344
  • [7] Apocynin ameliorates NADPH oxidase 4 (NOX4) induced oxidative damage in the hypoxic human retinal Muller cells and diabetic rat retina
    Ahmad, Ajmal
    Nawaz, Mohd Imtiaz
    Siddiquei, Mohammad Mairaj
    Abu El-Asrar, Ahmed M.
    MOLECULAR AND CELLULAR BIOCHEMISTRY, 2021, 476 (05) : 2099 - 2109
  • [8] Protective effects of metformin against myocardial ischemia-reperfusion injury via AMPK-dependent suppression of NOX4
    Shi, Yan
    Hou, Shu-Ai
    MOLECULAR MEDICINE REPORTS, 2021, 24 (04)
  • [9] Withaferin a Attenuates Retinal Ischemia-Reperfusion Injury via Akt-Dependent Inhibition of Oxidative Stress
    Yan, Zheyi
    Zhang, Yuanlin
    Wang, Chunfang
    Li, Yanjie
    Su, Qiang
    Cao, Jimin
    Cao, Xiaoming
    CELLS, 2022, 11 (19)
  • [10] Mettl3-Mediated N6-Methyladenosine Modification Mitigates Ganglion Cell Loss and Retinal Dysfunction in Retinal Ischemia-Reperfusion Injury by Inhibiting FoxO1-Mediated Autophagy
    Zhu, Feiyan
    Feng, Jiazhen
    Pan, Yiji
    Ouyang, Lingyi
    He, Tao
    Xing, Yiqiao
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2025, 66 (02)