Resonant scattering of surface acoustic waves by arrays of magnetic stripes

被引:3
作者
Au, Y. [1 ]
Latcham, O. S. [1 ]
Shytov, A. V. [1 ]
Kruglyak, V. V. [1 ]
机构
[1] Univ Exeter, Dept Phys & Astron, Stocker Rd, Exeter EX4 4QL, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1063/5.0170498
中图分类号
O59 [应用物理学];
学科分类号
摘要
Owing to magnetoelastic coupling, surface acoustic waves (SAWs) may be scattered resonantly by magnetic elements, such as nickel stripes. The scattering may be further enhanced via the Borrmann effect when the elements are organized into an array that matches the acoustic wavelength. We use finite-element modeling to consider single- and double-layer stripes patterned on top of a lithium niobate surface that carries Love surface waves. We do observe enhancement in the coupling for single-layer stripes, but only for Gilbert damping below its realistic value. For double-layered stripes, a weak yet clear and distinct signature of Bragg reflection is identified far away from the acoustic band edge, even for a realistic damping value. Double-layered stripes also offer better magnetic tunability when their magnetic period is different from the periodicity of elastic properties of the structure because of staggered magnetization patterns. The results pave the way for the design of magnetoacoustic metamaterials with an enhanced coupling between propagating SAWs and local magnetic resonances and for the development of reconfigurable SAW-based circuitry.
引用
收藏
页数:14
相关论文
共 26 条
[1]   Focused surface acoustic wave induced nano-oscillator based reservoir computing [J].
Chowdhury, Md. Fahim F. ;
Al Misba, Walid ;
Rajib, Md Mahadi ;
Edwards, Alexander J. ;
Bhattacharya, Dhritiman ;
Varghese, Mathew S. ;
Friedman, Joseph S. ;
Atulasimha, Jayasimha .
APPLIED PHYSICS LETTERS, 2022, 121 (10)
[2]   Advances in Magnetics Roadmap on Spin-Wave Computing [J].
Chumak, A. V. ;
Kabos, P. ;
Wu, M. ;
Abert, C. ;
Adelmann, C. ;
Adeyeye, A. O. ;
Akerman, J. ;
Aliev, F. G. ;
Anane, A. ;
Awad, A. ;
Back, C. H. ;
Barman, A. ;
Bauer, G. E. W. ;
Becherer, M. ;
Beginin, E. N. ;
Bittencourt, V. A. S. V. ;
Blanter, Y. M. ;
Bortolotti, P. ;
Boventer, I. ;
Bozhko, D. A. ;
Bunyaev, S. A. ;
Carmiggelt, J. J. ;
Cheenikundil, R. R. ;
Ciubotaru, F. ;
Cotofana, S. ;
Csaba, G. ;
Dobrovolskiy, O. V. ;
Dubs, C. ;
Elyasi, M. ;
Fripp, K. G. ;
Fulara, H. ;
Golovchanskiy, I. A. ;
Gonzalez-Ballestero, C. ;
Graczyk, P. ;
Grundler, D. ;
Gruszecki, P. ;
Gubbiotti, G. ;
Guslienko, K. ;
Haldar, A. ;
Hamdioui, S. ;
Hertel, R. ;
Hillebrands, B. ;
Hioki, T. ;
Houshang, A. ;
Hu, C. -M. ;
Huebl, H. ;
Huth, M. ;
Iacocca, E. ;
Jungfleisch, M. B. ;
Kakazei, G. N. .
IEEE TRANSACTIONS ON MAGNETICS, 2022, 58 (06)
[3]  
Donahue M. J., 1999, TECHNICAL REPORT, DOI DOI 10.6028/NIST.IR.6376
[4]   Spin Wave Electromagnetic Nano-Antenna Enabled by Tripartite Phonon-Magnon-Photon Coupling [J].
Fabiha, Raisa ;
Lundquist, Jonathan ;
Majumder, Sudip ;
Topsakal, Erdem ;
Barman, Anjan ;
Bandyopadhyay, Supriyo .
ADVANCED SCIENCE, 2022, 9 (08)
[5]   Phononic integrated circuitry and spin-orbit interaction of phonons [J].
Fu, Wei ;
Shen, Zhen ;
Xu, Yuntao ;
Zou, Chang-Ling ;
Cheng, Risheng ;
Han, Xu ;
Tang, Hong X. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[6]   Co- and contra-directional vertical coupling between ferromagnetic layers with grating for short-wavelength spin wave generation [J].
Graczyk, Piotr ;
Zelent, Mateusz ;
Krawczyk, Maciej .
NEW JOURNAL OF PHYSICS, 2018, 20
[7]   Coupled-mode theory for the interaction between acoustic waves and spin waves in magnonic-phononic crystals: Propagating magnetoelastic waves [J].
Graczyk, Piotr ;
Krawczyk, Maciej .
PHYSICAL REVIEW B, 2017, 96 (02)
[8]   Broadband magnetoelastic coupling in magnonic-phononic crystals for high-frequency nanoscale spin-wave generation [J].
Graczyk, Piotr ;
Klos, Jaroslaw ;
Krawczyk, Maciej .
PHYSICAL REVIEW B, 2017, 95 (10)
[9]   Chipless-RFID: A Review and Recent Developments [J].
Herrojo, Cristian ;
Paredes, Ferran ;
Mata-Contreras, Javier ;
Martin, Ferran .
SENSORS, 2019, 19 (15)
[10]   Nonreciprocal Magnetoacoustic Waves in Dipolar-Coupled Ferromagnetic Bilayers [J].
Kuess, M. ;
Heigl, M. ;
Flacke, L. ;
Hoerner, A. ;
Weiler, M. ;
Wixforth, A. ;
Albrecht, M. .
PHYSICAL REVIEW APPLIED, 2021, 15 (03)