MLGN: multi-scale local-global feature learning network for long-term series forecasting

被引:0
|
作者
Jiang, Maowei [1 ,2 ,3 ,4 ]
Wang, Kai [1 ,2 ,3 ]
Sun, Yue [1 ,2 ,3 ,4 ]
Chen, Wenbo [1 ,2 ,3 ,4 ]
Xia, Bingjie [1 ,2 ,3 ,4 ]
Li, Ruiqi [1 ,2 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Key Lab Networked Control Syst, Shenyang 110016, Peoples R China
[2] Chinese Acad Sci, Shenyang Inst Automation, Shenyang, Peoples R China
[3] Chinese Acad Sci, Inst Robot & Intelligent Mfg, Shenyang, Peoples R China
[4] Univ Chinese Acad Sci, Shenyang, Peoples R China
来源
MACHINE LEARNING-SCIENCE AND TECHNOLOGY | 2023年 / 4卷 / 04期
基金
中国国家自然科学基金;
关键词
time series forecasting; multi-sale; local-global feature extraction; deep learning; machine learning; long-term sequence forecasting;
D O I
10.1088/2632-2153/ad1436
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Although Transformer-based methods have achieved remarkable performance in the field of long-term series forecasting, they can be computationally expensive and lack the ability to specifically model local features as CNNs. CNN-based methods, such as temporal convolutional network (TCN), utilize convolutional filters to capture local temporal features. However, the intermediate layers of TCN suffer from a limited effective receptive field, which can result in the loss of temporal relations during global feature extraction.To solve the above problems, we propose to combine local features and global correlations to capture the overall view of time series (e.g. fluctuations, trends). To fully exploit the underlying information in the time series, a multi-scale branch structure is adopted to model different potential patterns separately. Each pattern is extracted using a combination of interactive learning convolution and causal frequency enhancement to capture both local features and global correlations. Furthermore, our proposed method,multi-scale local-global feature learning network (MLGN), achieves a time and memory complexity of O(L) and consistently achieve state-of-the-art results on six benchmark datasets. In comparision with previous best method Fedformer, MLGN yields 12.98% and 11.38% relative improvements for multivariate and univariate time series, respectively. Our code and data are available on Github at https://github.com/Zero-coder/MLGN.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Local-Global and Multi-Scale (LG-MS) Mixer Architecture for Long-Term Time Series Forecasting
    Peng, Zhennan
    Gao, Boyong
    Xia, Ziqi
    Liu, Jie
    IEEE ACCESS, 2025, 13 : 9199 - 9208
  • [2] A multi-scale temporal-frequency fusion network based on MLP for long-term time series forecasting
    Song, Yaqi
    Wan, Rujie
    Li, Li
    Wang, Wanyu
    Xing, Haonan
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, : 3943 - 3954
  • [3] Multi-scale local-global architecture for person re-identification
    Liu, Jing
    Tiwari, Prayag
    Tri Gia Nguyen
    Gupta, Deepak
    Band, Shahab S.
    SOFT COMPUTING, 2022, 26 (16) : 7967 - 7977
  • [4] Multi-scale local-global architecture for person re-identification
    Jing Liu
    Prayag Tiwari
    Tri Gia Nguyen
    Deepak Gupta
    Shahab S. Band
    Soft Computing, 2022, 26 : 7967 - 7977
  • [5] MFAMNet: Multi-Scale Feature Attention Mixture Network for Short-Term Load Forecasting
    Yang, Shengchun
    Zhu, Kedong
    Li, Feng
    Weng, Liguo
    Cheng, Liangcheng
    APPLIED SCIENCES-BASEL, 2023, 13 (05):
  • [6] Learning the Evolutionary and Multi-scale Graph Structure for Multivariate Time Series Forecasting
    Ye, Junchen
    Liu, Zihan
    Du, Bowen
    Sun, Leilei
    Li, Weimiao
    Fu, Yanjie
    Xiong, Hui
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 2296 - 2306
  • [7] Hidformer: Hierarchical dual-tower transformer using multi-scale mergence for long-term time series forecasting
    Liu, Zhaoran
    Cao, Yizhi
    Xu, Hu
    Huang, Yuxin
    He, Qunshan
    Chen, Xinjie
    Tang, Xiaoyu
    Liu, Xinggao
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 239
  • [8] A Hierarchical Multi-scale Cortical Learning Algorithm for Time Series Forecasting
    Niu, Dejiao
    Jiang, Jie
    Cai, Tao
    Li, Lei
    Xia, Xuewen
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT IV, ICIC 2024, 2024, 14865 : 13 - 24
  • [9] Graph convolutional neural network for multi-scale feature learning
    Edwards, Michael
    Xie, Xianghua
    Palmer, Robert, I
    Tam, Gary K. L.
    Alcock, Rob
    Roobottom, Carl
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2020, 194
  • [10] Short-Term Load Forecasting Based on Multi-Scale Ensemble Deep Learning Neural Network
    Shen, Qin
    Mo, Li
    Liu, Guanjun
    Zhou, Jianzhong
    Zhang, Yongchuan
    Ren, Pinan
    IEEE ACCESS, 2023, 11 : 111963 - 111975