3D-DDA: 3D DUAL-DOMAIN ATTENTION FOR BRAIN TUMOR SEGMENTATION

被引:1
作者
Nhu-Tai Do [2 ]
Hoang-Son Vo-Thanh [3 ]
Tram-Tran Nguyen-Quynh [3 ]
Kim, Soo-Hyung [1 ]
机构
[1] Chonnam Natl Univ, Dept Artificial Intelligence Convergence, Gwangju, South Korea
[2] Univ Econ Ho Chi Minh City UEH, Inst Intelligent & Interact Technol, Ho Chi Minh City, Vietnam
[3] HCMC Univ Foreign Language Informat Technol, Dept Informat Technol, Ho Chi Minh City, Vietnam
来源
2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP | 2023年
关键词
Brain tumor segmentation; medical image analysis; 3D dual-domain attention; NETWORK;
D O I
10.1109/ICIP49359.2023.10222602
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate brain tumor segmentation plays an essential role in the diagnosis process. However, there are challenges due to the variety of tumors in low contrast, morphology, location, annotation bias, and imbalance among tumor regions. This work proposes a novel 3D dual-domain attention module to learn local and global information in spatial and context domains from encoding feature maps in Unet. Our attention module generates refined feature maps from the enlarged reception field at every stage by attention mechanisms and residual learning to focus on complex tumor regions. Our experiments on BraTS 2018 have demonstrated superior performance compared to existing state-of-the-art methods.
引用
收藏
页码:3215 / 3219
页数:5
相关论文
共 16 条
  • [1] [Anonymous], 2017, CANC IMAGING ARCH, DOI DOI 10.21037/CCO.2017.06.28
  • [2] [Anonymous], 2022, 7 INT WORKSH BRAINLE, DOI DOI 10.1007/978-3-031-08999-2_22
  • [3] A Partially Reversible U-Net for Memory-Efficient Volumetric Image Segmentation
    Brugger, Robin
    Baumgartner, Christian F.
    Konukoglu, Ender
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT III, 2019, 11766 : 429 - 437
  • [4] Attention mechanisms in computer vision: A survey
    Guo, Meng-Hao
    Xu, Tian-Xing
    Liu, Jiang-Jiang
    Liu, Zheng-Ning
    Jiang, Peng-Tao
    Mu, Tai-Jiang
    Zhang, Song-Hai
    Martin, Ralph R.
    Cheng, Ming-Ming
    Hu, Shi-Min
    [J]. COMPUTATIONAL VISUAL MEDIA, 2022, 8 (03) : 331 - 368
  • [5] nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation
    Isensee, Fabian
    Jaeger, Paul F.
    Kohl, Simon A. A.
    Petersen, Jens
    Maier-Hein, Klaus H.
    [J]. NATURE METHODS, 2021, 18 (02) : 203 - +
  • [6] Liu CY, 2019, INT GEOSCI REMOTE SE, P2658, DOI [10.1109/IGARSS.2019.8897820, 10.1109/igarss.2019.8897820]
  • [7] V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation
    Milletari, Fausto
    Navab, Nassir
    Ahmadi, Seyed-Ahmad
    [J]. PROCEEDINGS OF 2016 FOURTH INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2016, : 565 - 571
  • [8] 3D MRI Brain Tumor Segmentation Using Autoencoder Regularization
    Myronenko, Andriy
    [J]. BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT II, 2019, 11384 : 311 - 320
  • [9] Medical image segmentation with 3D convolutional neural networks: A survey
    Niyas, S.
    Pawan, S. J.
    Kumar, M. Anand
    Rajan, Jeny
    [J]. NEUROCOMPUTING, 2022, 493 : 397 - 413
  • [10] 3D-ESPNet with Pyramidal Refinement for Volumetric Brain Tumor Image Segmentation
    Nuechterlein, Nicholas
    Mehta, Sachin
    [J]. BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT II, 2019, 11384 : 245 - 253