Reliability analysis of the stress intensity factor using multilevel Monte Carlo methods

被引:8
|
作者
Hamdia, Khader M. [1 ]
Ghasemi, Hamid [2 ,3 ]
机构
[1] Leibniz Univ Hannover, Inst Continuum Mech, Univ 1, D-30823 Hannover, Germany
[2] Arak Univ Technol, Dept Mech Engn, Arak 3818141167, Iran
[3] Ctr Int Sci Studies & Collaborat CISSC, Minist Sci Res & Technol Iran, Tehran 1314983655, Iran
关键词
Reliability analysis; Probability of failure; Fracture mechanics; Stress intensity factor; Multilevel Monte Carlo; FRACTURE-MECHANICS; SIMULATION;
D O I
10.1016/j.probengmech.2023.103497
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper presents a reliability analysis for fracture toughness using a multilevel refinement on a hierarchy of computational models. A 2D finite element model discretized by quadrilateral elements is developed to analyze the stress intensity with the presence of an initial edge crack. The multilevel simulations are obtained considering a non-uniform sequence of mesh refinement in the vicinity of the crack tip. We set the probabilistic problem accounting for applied stress and crack size uncertainties. We analyze several error tolerances using the standard and multilevel Monte Carlo methods combined with the selective refinement procedure. The probability of failure is estimated by expanding it in a telescoping sum of an initial approximation at the coarsest mesh and a series of incremental corrections between the subsequent levels. In our analysis, we take on two common fracture problems; a single-edge notched tension to investigate the pure mode-I and an asymmetric four-points bending to consider the mixed mode-I/II. The results show significant savings in the computation cost.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Determination of stress intensity factor with direct stress approach using finite element analysis
    X. Ji
    F. Zhu
    P. F. He
    Acta Mechanica Sinica, 2017, 33 : 879 - 885
  • [22] Determination of stress intensity factor with direct stress approach using finite element analysis
    X.Ji
    F.Zhu
    P.F.He
    Acta Mechanica Sinica, 2017, (05) : 879 - 885
  • [23] Reliability analysis in fracture mechanics using the first-order reliability method and Monte Carlo simulation
    Puatatsananon, W.
    Saouma, V. E.
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2006, 29 (11) : 959 - 975
  • [24] Multilevel Monte Carlo Simulation Applied to Distribution Systems Reliability Evaluation
    Huda, A. S. N.
    Zivanovic, Rastko
    2017 IEEE MANCHESTER POWERTECH, 2017,
  • [25] SCHEDULING MASSIVELY PARALLEL MULTIGRID FOR MULTILEVEL MONTE CARLO METHODS
    Drzisga, D.
    Gmeiner, B.
    Ruede, U.
    Scheichl, R.
    Wohlmuth, B.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (05) : S873 - S897
  • [26] Stress intensity factor solutions for fretting fatigue using stress gradient factor
    Antunes, Marcelo Avelar
    Moreira da Silva, Cosme Roberto
    Fontes do Rego, Eduardo Martins
    de Oliveira Miranda, Antonio Carlos
    ENGINEERING FRACTURE MECHANICS, 2017, 186 : 331 - 346
  • [27] Stress intensity factor analysis of interface cracks using X-FEM
    Nagashima, T
    Omoto, Y
    Tani, S
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2003, 56 (08) : 1151 - 1173
  • [28] Uncertainty Quantification for Porous Media Flow Using Multilevel Monte Carlo
    Mohring, Jan
    Milk, Rene
    Ngo, Adrian
    Klein, Ole
    Iliev, Oleg
    Ohlberger, Mario
    Bastian, Peter
    LARGE-SCALE SCIENTIFIC COMPUTING, LSSC 2015, 2015, 9374 : 145 - 152
  • [29] Multilevel Monte Carlo methods for computing failure probability of porous media flow systems
    Fagerlund, F.
    Hellman, F.
    Malqvist, A.
    Niemi, A.
    ADVANCES IN WATER RESOURCES, 2016, 94 : 498 - 509
  • [30] Multilevel Monte Carlo methods and lower-upper bounds in initial margin computations
    Bourgey, Florian
    De Marco, Stefano
    Gobet, Emmanuel
    Zhou, Alexandre
    MONTE CARLO METHODS AND APPLICATIONS, 2020, 26 (02) : 131 - 161