Rigorous derivation of the Fick cross-diffusion system from the multi-species Boltzmann equation in the diffusive scaling

被引:0
作者
Briant, Marc [1 ]
Grec, Berenice [1 ]
机构
[1] Univ Paris Cite, CNRS, MAP5, F-75006 Paris, France
关键词
Multispecies Boltzmann equation; gaseous and fluid mixture; Fick's equation; perturbative theory; hydrodynamical limit; Knudsen number; INCOMPRESSIBLE NAVIER-STOKES; FLUID DYNAMIC LIMITS; KINETIC-MODEL; LINEARIZED BOLTZMANN; MIXTURE; CONVERGENCE; ASYMPTOTICS;
D O I
10.3233/ASY-231847
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present the arising of the Fick cross-diffusion system of equations for fluid mixtures from the multi-species Boltzmann equation in a rigorous manner in Sobolev spaces. To this end, we formally show that, in a diffusive scaling, the hydrodynamical limit of the kinetic system is the Fick model supplemented with a closure relation and we give explicit formulae for the macroscopic diffusion coefficients from the Boltzmann collision operator. Then, we provide a perturbative Cauchy theory in Sobolev spaces for the constructed Fick system, which turns out to be a dilated parabolic equation. We finally prove the stability of the system in the Boltzmann equation, ensuring a rigorous derivation between the two models.
引用
收藏
页码:55 / 80
页数:26
相关论文
共 40 条
  • [1] A consistent BGK-type model for gas mixtures
    Andries, P
    Aoki, K
    Perthame, B
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2002, 106 (5-6) : 993 - 1018
  • [2] Baranger C, 2005, REV MAT IBEROAM, V21, P819
  • [3] On the Chapman-Enskog asymptotics for a mixture of monoatomic and polyatomic rarefied gases
    Baranger, Celine
    Bisi, Marzia
    Brull, Stephane
    Desvillettes, Laurent
    [J]. 31ST INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS (RGD31), 2019, 2132
  • [4] FLUID DYNAMIC LIMITS OF KINETIC-EQUATIONS .1. FORMAL DERIVATIONS
    BARDOS, C
    GOLSE, F
    LEVERMORE, D
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1991, 63 (1-2) : 323 - 344
  • [5] FLUID DYNAMIC LIMITS OF KINETIC EQUATIONS-II CONVERGENCE PROOFS FOR THE BOLTZMANN-EQUATION
    BARDOS, C
    GOLSE, F
    LEVERMORE, CD
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1993, 46 (05) : 667 - 753
  • [6] Recovering Navier-Stokes Equations from Asymptotic Limits of the Boltzmann Gas Mixture Equation
    Bianca, Carlo
    Dogbe, Christian
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2016, 65 (05) : 553 - 562
  • [7] FORMAL PASSAGE FROM KINETIC THEORY TO INCOMPRESSIBLE NAVIER-STOKES EQUATIONS FOR A MIXTURE OF GASES
    Bisi, Marzia
    Desvillettes, Laurent
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (04): : 1171 - 1197
  • [8] Multi-temperature Hydrodynamic Limit from Kinetic Theory in a Mixture of Rarefied Gases
    Bisi, Marzia
    Martalo, Giorgio
    Spiga, Giampiero
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2012, 122 (01) : 37 - 51
  • [9] Bondesan A., 2019, Preprints
  • [10] Stability of the Maxwell-Stefan System in the Diffusion Asymptotics of the Boltzmann Multi-species Equation
    Bondesan, Andrea
    Briant, Marc
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 382 (01) : 381 - 440