Topological analysis of pseudo-Euclidean Euler top for special values of the parameters

被引:3
作者
Altuev, M. K. [1 ]
Kibkalo, V. A. [1 ]
机构
[1] Lomonosov Moscow State Univ, Fac Mech & Math, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
integrable system; rigid body dynamics; Liouville foliation; pseudo-Euclidean space; topological invariant; singularity; INTEGRABLE HAMILTONIAN-SYSTEMS; RIGID-BODY DYNAMICS; CLASSIFICATION; SURFACES; THEOREM;
D O I
10.4213/sm9771e
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An analogue of the Euler top is considered for a pseudo-Euclidean space is under consideration. In the cases when the geometric integral or area integral vanishes the bifurcation diagrams of the moment map are constructed and the homeomorphism class of each leaf of the Liouville foliation is determined. For each arc of the bifurcation diagram, for one of the two possible cases of the mutual arrangement of the moments of inertia, the types of singularities in the preimage of a small neighbourhood of this arc (analogues of Fomenko 3-atoms) are determined, and for nonsingular isoenergy and isointegral surfaces an invariant of rough Liouville equivalence (an analogue of a rough molecule) is constructed. The pseudo-Euclidean Euler system turns out to have noncompact noncritical bifurcations.
引用
收藏
页码:334 / 348
页数:15
相关论文
共 23 条
  • [1] The topology of integrable systems with incomplete fields
    Aleshkin, K. R.
    [J]. SBORNIK MATHEMATICS, 2014, 205 (09) : 1264 - 1278
  • [2] [Anonymous], 1999, Integrable Hamiltonian systems. Geometry, topology, classification
  • [3] TOPOLOGICAL CLASSIFICATION OF INTEGRABLE HAMILTONIAN-SYSTEMS WITH 2 DEGREES OF FREEDOM - LIST OF SYSTEMS OF SMALL COMPLEXITY
    BOLSINOV, AV
    MATVEEV, SV
    FOMENKO, AT
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 1990, 45 (02) : 59 - 94
  • [4] Rigid body dynamics in non-Euclidean spaces
    Borisov, A. V.
    Mamaev, I. S.
    [J]. RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2016, 23 (04) : 431 - 454
  • [5] Borisov A.V., 2004, CLASSICAL DYNAMICS N
  • [6] Fedoseev D.A., 2020, J. Math. Sci. (N.Y.), V248, P810, DOI [10.1007/s10958-020-04915-w, DOI 10.1007/S10958-020-04915-W]
  • [7] Fomenko A. T., 1991, Algorithmic and computer methods for threemanifolds
  • [8] FOMENKO AT, 1986, DOKL AKAD NAUK SSSR+, V287, P1071
  • [9] FOMENKO AT, 1986, MATH USSR IZV+, V50, P629
  • [10] FOMENKO AT, 1990, MATH USSR IZV+, V54, P567