Cluster-aware attentive convolutional recurrent network for multivariate time-series forecasting

被引:4
|
作者
Bai, Simeng [1 ]
Zhang, Qi [3 ,4 ]
He, Hui [2 ]
Hu, Liang [3 ,4 ]
Wang, Shoujin [5 ]
Niu, Zhendong [1 ]
机构
[1] Beijing Inst Technol, Sch Comp Sci Technol, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Sch Med Technol, Beijing 100081, Peoples R China
[3] Tongji Univ, Shanghai 200092, Peoples R China
[4] DeepBlue Acad Sci, Shanghai 200336, Peoples R China
[5] Univ Technol Sydney, Data Sci Lab, Sydney, Australia
基金
中国国家自然科学基金;
关键词
Multivariate time series; Forecasting; Inter-series dependencies; Cluster-aware attention mechanism; NEURAL-NETWORK;
D O I
10.1016/j.neucom.2023.126701
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multivariate time-series (MTS) forecasting plays a crucial role in various real-world applications, but the complex dependencies between time-series variables (i.e., inter-series dependencies) make this task extremely challenging. While most existing studies focus on modeling intra-series (temporal) dependencies by capturing longand short-term patterns, they fail to explore and exploit the inter-series dependencies to enhance MTS forecasting. In this paper, we propose a Cluster-aware Attentive Convolutional Recurrent Network (CACRN) to capture both inter-series and intra-series dependencies in MTS data. Specifically, CACRN first introduces a cluster-aware variable representation module that separates irrelevant variables and captures the interaction between relevant variables to learn cluster-aware variable representations. Then, CACRN feeds these representations into parallel convolutional recurrent neural networks (CRNNs) to capture the short-and longterm temporal dependencies in a cluster-wise manner. Next, a cluster-aware attention mechanism is introduced to attend to temporal information in each cluster and co-attend all cluster information jointly to capture intracluster and inter-cluster dependencies for the downstream forecasting task. Our extensive experiments on six real-world datasets demonstrate that CACRN is effective and outperforms representative and state-of-the-art baselines. Our proposed method is suitable for a wide range of real-world data collections, especially those with clear dependencies of variables.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] A partial correlation vine based approach for modeling and forecasting multivariate volatility time-series
    Barthel, Nicole
    Czado, Claudia
    Okhrin, Yarema
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 142
  • [42] FEAT: A general framework for feature-aware multivariate time-series representation learning
    Kim, Subin
    Chung, Euisuk
    Kang, Pilsung
    KNOWLEDGE-BASED SYSTEMS, 2023, 277
  • [43] A Framework for Imbalanced Time-Series Forecasting
    Silvestrin, Luis P.
    Pantiskas, Leonardos
    Hoogendoorn, Mark
    MACHINE LEARNING, OPTIMIZATION, AND DATA SCIENCE (LOD 2021), PT I, 2022, 13163 : 250 - 264
  • [44] FORECASTING OF TIME-SERIES FOR FINANCIAL MARKETS
    Magenreuter, Reinhard
    MATHEMATICS AND INFORMATICS, 2016, 59 (05): : 516 - 525
  • [45] Boosted Embeddings for Time-Series Forecasting
    Karingula, Sankeerth Rao
    Ramanan, Nandini
    Tahmasbi, Rasool
    Amjadi, Mehrnaz
    Jung, Deokwoo
    Si, Ricky
    Thimmisetty, Charanraj
    Polania, Luisa F.
    Sayer, Marjorie
    Taylor, Jake
    Coelho, Claudionor Nunes, Jr.
    MACHINE LEARNING, OPTIMIZATION, AND DATA SCIENCE (LOD 2021), PT II, 2022, 13164 : 1 - 14
  • [46] Deep transition network with gating mechanism for multivariate time series forecasting
    Wang, Yimeng
    Feng, Shi
    Wang, Bing
    Ouyang, Jihong
    APPLIED INTELLIGENCE, 2023, 53 (20) : 24346 - 24359
  • [47] Forecasting time series with multivariate copulas
    Simard, Clarence
    Remillard, Bruno
    DEPENDENCE MODELING, 2015, 3 (01): : 59 - 82
  • [48] Dilated convolutional neural networks for time series forecasting
    Borovykh, Anastasia
    Bohte, Sander
    Oosterlee, Cornelis W.
    JOURNAL OF COMPUTATIONAL FINANCE, 2019, 22 (04) : 73 - 101
  • [49] Construction of Sparse Weighted Directed Network (SWDN) from the Multivariate Time-Series
    Hosseini, Rahilsadat
    Liu, Feng
    Wang, Shouyi
    BRAIN INFORMATICS, BI 2018, 2018, 11309 : 270 - 281
  • [50] A new hybrid recurrent artificial neural network for time series forecasting
    Egrioglu, Erol
    Bas, Eren
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (03) : 2855 - 2865