Cluster-aware attentive convolutional recurrent network for multivariate time-series forecasting

被引:4
|
作者
Bai, Simeng [1 ]
Zhang, Qi [3 ,4 ]
He, Hui [2 ]
Hu, Liang [3 ,4 ]
Wang, Shoujin [5 ]
Niu, Zhendong [1 ]
机构
[1] Beijing Inst Technol, Sch Comp Sci Technol, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Sch Med Technol, Beijing 100081, Peoples R China
[3] Tongji Univ, Shanghai 200092, Peoples R China
[4] DeepBlue Acad Sci, Shanghai 200336, Peoples R China
[5] Univ Technol Sydney, Data Sci Lab, Sydney, Australia
基金
中国国家自然科学基金;
关键词
Multivariate time series; Forecasting; Inter-series dependencies; Cluster-aware attention mechanism; NEURAL-NETWORK;
D O I
10.1016/j.neucom.2023.126701
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multivariate time-series (MTS) forecasting plays a crucial role in various real-world applications, but the complex dependencies between time-series variables (i.e., inter-series dependencies) make this task extremely challenging. While most existing studies focus on modeling intra-series (temporal) dependencies by capturing longand short-term patterns, they fail to explore and exploit the inter-series dependencies to enhance MTS forecasting. In this paper, we propose a Cluster-aware Attentive Convolutional Recurrent Network (CACRN) to capture both inter-series and intra-series dependencies in MTS data. Specifically, CACRN first introduces a cluster-aware variable representation module that separates irrelevant variables and captures the interaction between relevant variables to learn cluster-aware variable representations. Then, CACRN feeds these representations into parallel convolutional recurrent neural networks (CRNNs) to capture the short-and longterm temporal dependencies in a cluster-wise manner. Next, a cluster-aware attention mechanism is introduced to attend to temporal information in each cluster and co-attend all cluster information jointly to capture intracluster and inter-cluster dependencies for the downstream forecasting task. Our extensive experiments on six real-world datasets demonstrate that CACRN is effective and outperforms representative and state-of-the-art baselines. Our proposed method is suitable for a wide range of real-world data collections, especially those with clear dependencies of variables.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Graph correlated attention recurrent neural network for multivariate time series forecasting
    Geng, Xiulin
    He, Xiaoyu
    Xu, Lingyu
    Yu, Jie
    INFORMATION SCIENCES, 2022, 606 : 126 - 142
  • [12] A multivariate heuristic model for fuzzy time-series forecasting
    Huarng, Kun-Huang
    Yu, Tiffany Hui-Kuang
    Hsu, Yu Wei
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2007, 37 (04): : 836 - 846
  • [13] MTSMAE: Masked Autoencoders for Multivariate Time-Series Forecasting
    Tang, Peiwang
    Zhang, Xianchao
    2022 IEEE 34TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2022, : 982 - 989
  • [14] Multivariate Time-Series Forecasting Model: Predictability Analysis and Empirical Study
    Zhao, Qinpei
    Yang, Guangda
    Zhao, Kai
    Yin, Jiaming
    Rao, Weixiong
    Chen, Lei
    IEEE TRANSACTIONS ON BIG DATA, 2023, 9 (06) : 1536 - 1548
  • [15] A NEURAL NETWORK MODEL FOR TIME-SERIES FORECASTING
    Morariu, Nicolae
    Iancu, Eugenia
    Vlad, Sorin
    ROMANIAN JOURNAL OF ECONOMIC FORECASTING, 2009, 12 (04): : 213 - 223
  • [16] Adaptive Temporal-Frequency Network for Time-Series Forecasting
    Yang, Zhangjing
    Yan, Wei-Wu
    Huang, Xiaolin
    Mei, Lin
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (04) : 1576 - 1587
  • [17] Ensembles of Neural Network for Telemetry Multivariate Time Series Forecasting
    Doudkin, Alexander
    Marushko, Yauheni
    PATTERN RECOGNITION AND INFORMATION PROCESSING, 2017, 673 : 53 - 62
  • [18] Interpretable Multivariate Time Series Forecasting with Temporal Attention Convolutional Neural Networks
    Pantiskas, Leonardos
    Verstoep, Kees
    Bal, Henri
    2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 1687 - 1694
  • [19] A long-term multivariate time series forecasting network combining series decomposition and convolutional neural networks
    Wang, Xingyu
    Liu, Hui
    Du, Junzhao
    Dong, Xiyao
    Yang, Zhihan
    APPLIED SOFT COMPUTING, 2023, 139
  • [20] Multivariate Time Series Forecasting exploiting Tensor Projection Embedding and Gated Memory Network
    Yan, Zhenxiong
    Xie, Kun
    Wang, Xin
    Zhang, Dafang
    Xie, Gaogang
    Li, Kenli
    Wen, Jigang
    2021 IEEE/ACM 29TH INTERNATIONAL SYMPOSIUM ON QUALITY OF SERVICE (IWQOS), 2021,