Stabilization mechanism for many-body localization in two dimensions

被引:4
作者
Foo, D. C. W. [1 ]
Swain, N. [1 ,2 ]
Sengupta, P. [1 ,3 ]
Lemarie, G. [2 ,4 ,5 ]
Adam, S. [1 ,6 ,7 ,8 ]
机构
[1] Natl Univ Singapore, Ctr Adv 2D Mat, 6 Sci Dr 2, Singapore 117546, Singapore
[2] Nanyang Technol Univ, Natl Univ Singapore, Univ Cote dAzur, Sorbonne Univ,MajuLab,CNRS,Int Joint Res Unit IRL, Singapore, Singapore
[3] Nanyang Technol Univ, Sch Phys & Math Sci, 21 Nanyang Link, Singapore 637371, Singapore
[4] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
[5] Univ Toulouse, Lab Phys Theor, CNRS, UPS, Toulouse, France
[6] Natl Univ Singapore, Dept Mat Sci & Engn, 9 Engn Dr 1, Singapore 117575, Singapore
[7] Yale NUS Coll, 16 Coll Ave West, Singapore 138527, Singapore
[8] Natl Univ Singapore, Fac Sci, Dept Phys, 2 Sci Dr 3, Singapore 117542, Singapore
来源
PHYSICAL REVIEW RESEARCH | 2023年 / 5卷 / 03期
基金
新加坡国家研究基金会;
关键词
D O I
10.1103/PhysRevResearch.5.L032011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Experiments in cold-atom systems see almost identical signatures of many-body localization (MBL) in both one-dimensional (d = 1) and two-dimensional (d = 2) systems despite the thermal avalanche hypothesis showing that the MBL phase is unstable ford > 1. Underpinning the thermal avalanche argument is the assumption of exponential localization of local integrals of motion (LIOM). In this Letter we demonstrate that the addition of a confining potential-as is typical in experimental setups-allows a noninteracting disordered system to have superexponentially (Gaussian) localized wave functions, and an interacting disordered system to undergo a localization transition. Moreover, we show that Gaussian localization of MBL LIOM shifts the quantum avalanche critical dimension from d = 1 to d = 2, potentially bridging the divide between the experimental demonstrations of MBL in these systems and existing theoretical arguments that claim that such demonstrations are impossible.
引用
收藏
页数:6
相关论文
共 65 条
[1]   Colloquium: Many-body localization, thermalization, and entanglement [J].
Abanin, Dmitry A. ;
Altman, Ehud ;
Bloch, Immanuel ;
Serbyn, Maksym .
REVIEWS OF MODERN PHYSICS, 2019, 91 (02)
[2]   Many-body localization: An introduction and selected topics [J].
Alet, Fabien ;
Laflorencie, Nicolas .
COMPTES RENDUS PHYSIQUE, 2018, 19 (06) :498-525
[3]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[4]  
aps, US, DOI [10.1103/PhysRevResearch.5.L032011, DOI 10.1103/PHYSREVRESEARCH.5.L032011]
[5]   Distribution of the Ratio of Consecutive Level Spacings in Random Matrix Ensembles [J].
Atas, Y. Y. ;
Bogomolny, E. ;
Giraud, O. ;
Roux, G. .
PHYSICAL REVIEW LETTERS, 2013, 110 (08)
[6]   Universal principles of moire band structures [J].
Attig, Jan ;
Park, Jinhong ;
Scherer, Michael M. ;
Trebst, Simon ;
Altland, Alexander ;
Rosch, Achim .
2D MATERIALS, 2021, 8 (04)
[7]   Possible experimental manifestations of the many-body localization [J].
Basko, D. M. ;
Aleiner, I. L. ;
Altshuler, B. L. .
PHYSICAL REVIEW B, 2007, 76 (05)
[8]   Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states [J].
Basko, DM ;
Aleiner, IL ;
Altshuler, BL .
ANNALS OF PHYSICS, 2006, 321 (05) :1126-1205
[9]   Probing Slow Relaxation and Many-Body Localization in Two-Dimensional Quasiperiodic Systems [J].
Bordia, Pranjal ;
Lueschen, Henrik ;
Scherg, Sebastian ;
Gopalakrishnan, Sarang ;
Knap, Michael ;
Schneider, Ulrich ;
Bloch, Immanuel .
PHYSICAL REVIEW X, 2017, 7 (04)
[10]   Coexistence of localized and extended phases: Many-body localization in a harmonic trap [J].
Chanda, Titas ;
Yao, Ruixiao ;
Zakrzewski, Jakub .
PHYSICAL REVIEW RESEARCH, 2020, 2 (03)