Remarks on the sum of powers of normalized signless Laplacian eigenvalues of graphs

被引:0
作者
Altindag, Serife Burcu Bozkurt [1 ]
Milovanovic, Igor [2 ]
Milovanovic, Emina [2 ]
Matejic, Marjan [2 ]
机构
[1] Selcuk Univ, Fac Sci, Konya, Turkiye
[2] Univ Nis, Fac Elect Engn, Nish, Serbia
关键词
normalized signless Laplacian eigenvalues; Laplacian incidence energy; Randic incidence energy; INCIDENCE ENERGY; RESISTANCE-DISTANCE; BOUNDS;
D O I
10.2298/FIL2328487B
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V, (sic)), V = {v(1), v(2),..., v(n)}, be a simple connected graph of order n and size m. Denote by gamma(+)(1) >= gamma(+)(2) >= center dot center dot center dot >= gamma(+)(n) >= 0 the normalized signless Laplacian eigenvalues of G, and by sigma(alpha)(G) the sum of alpha-th powers of the normalized signless Laplacian eigenvalues of a connected graph. The paper deals with bounds of sigma(alpha). Some special cases, when alpha = 1/2 and alpha = -1, are also considered.
引用
收藏
页码:9487 / 9496
页数:10
相关论文
共 30 条
[1]  
Altındağ B, 2019, Mathematics Interdisciplinary Research, V4, P171, DOI [10.22052/mir.2019.208991.1180, 10.22052/mir.2019.208991.1180, DOI 10.22052/MIR.2019.208991.1180]
[2]  
Bianchi M, 2013, MATCH-COMMUN MATH CO, V70, P707
[3]  
Bozkurt Altindag B., 2021, B INTERMATH VIRTUAL, V11, P135
[4]  
Bozkurt SB, 2012, MATCH-COMMUN MATH CO, V68, P917
[5]  
Bozkurt SB, 2010, MATCH-COMMUN MATH CO, V64, P239
[6]  
Butler S.K., 2008, Ph.D. dissertation,
[7]  
Butler S, 2016, IMA VOL MATH APPL, V159, P295, DOI 10.1007/978-3-319-24298-9_13
[8]   On the normalized Laplacian energy and general Randic index R_1 of graphs [J].
Cavers, Michael ;
Fallat, Shaun ;
Kirkland, Steve .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (01) :172-190
[9]   Resistance distance and the normalized Laplacian spectrum [J].
Chen, Haiyan ;
Zhang, Fuji .
DISCRETE APPLIED MATHEMATICS, 2007, 155 (05) :654-661
[10]   The normalized incidence energy of a graph [J].
Cheng, Bo ;
Liu, Bolian .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (11) :4510-4519