THE NON-EXISTENCE OF D(-1)-QUADRUPLES EXTENDING CERTAIN PAIRS IN IMAGINARY QUADRATIC RINGS

被引:1
作者
Fujita, Y. [1 ]
Soldo, I. [2 ]
机构
[1] Nihon Univ, Coll Ind Technol, Dept Math, 2 11 1 Shin ei, Narashino, Chiba, Japan
[2] Univ Osijek, Sch Appl Math & Comp Sci, Trg Ljudevita Gaja 6, Osijek HR-31000, Croatia
关键词
system of Pellian equations; Diophantine m-tuple; Pade approximation method; D(-1)-TRIPLES 1; INTEGER POINTS; EXTENSIBILITY;
D O I
10.1007/s10474-023-01356-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A D(n)-m-tuple, where n is a non-zero integer, is a set of m distinct elements in a commutative ring R such that the product of any two distinct elements plus n is a perfect square in R. In this paper, we prove that there does not exist a D(-1)-quadruple {a, b, c, d} in the ring Z[root-k], k >= 2 with positive integers a < b < 16a(2) - a -2 + 2 root k(8a(2) + 3a +1) and integers c and d satisfying d < 0 < c. By combining that result with [14, Theorem 1.1] we were able to obtain a general result on the non-existence of a D(-1)-quadruple {a, b, c, d} in Z[root- k] with integers a, b, c, d satisfying a < b <= 8a - 3. Furthermore, for a non-negative integer i and a positive integer j, we apply the obtained results in proving of the non-existence of D(-1)-quadruples containing powers of primes p(i), q(j) with an arbitrary different primes p and q.
引用
收藏
页码:455 / 482
页数:28
相关论文
共 21 条
[1]   On the size of Diophantine m-tuples in imaginary quadratic number rings [J].
Adzaga, Nikola .
BULLETIN OF MATHEMATICAL SCIENCES, 2021, 11 (01)
[2]  
Bokun MJ, 2019, ACTA MATH HUNG, V159, P89, DOI 10.1007/s10474-019-00951-4
[3]   There is no Diophantine D(-1)$D(-1)$-quadruple [J].
Bonciocat, Nicolae Ciprian ;
Cipu, Mihai ;
Mignotte, Maurice .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2022, 105 (01) :63-99
[4]   Complete solution of a problem of Diophantus and Euler [J].
Dujella, A ;
Fuchs, C .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2005, 71 :33-52
[5]   On the size of diophantine m-tuples [J].
Dujella, A .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2002, 132 :23-33
[6]  
Dujella A., 1997, Glas. Mat. Ser. III, V32, P1
[7]  
Dujella A., Diophantine m-tuples
[8]  
Dujella A., 1998, ACTA MATH INFORM U O, V6, P59
[9]   Effective solution of the D(-1)-quadruple conjecture [J].
Dujella, Andrej ;
Filipin, Alan ;
Fuchs, Clemens .
ACTA ARITHMETICA, 2007, 128 (04) :319-338
[10]  
Dujella A, 2019, B MALAYS MATH SCI SO, V42, P2915, DOI 10.1007/s40840-018-0638-5