Intensity Tomography Method for Secure and High-Performance Quantum Key Distribution

被引:1
作者
Lu, Feng-Yu [1 ,2 ,3 ]
Wang, Ze-Hao [1 ,2 ,3 ]
Wang, Shuang [1 ,2 ,3 ]
Yin, Zhen-Qiang [1 ,2 ,3 ]
Chen, Jia-Lin [1 ,2 ,3 ]
Kang, Xiang [1 ,2 ,3 ]
He, De-Yong [1 ,2 ,3 ]
Chen, Wei [1 ,2 ,3 ]
Fan-Yuan, Guan-Jie [1 ,2 ,3 ]
Guo, Guang-Can [1 ,2 ,3 ]
Han, Zheng-Fu [1 ,2 ,3 ]
机构
[1] Univ Sci & Technol China, CAS Key Lab Quantum Informat, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phys, Hefei 230026, Peoples R China
[3] Univ Sci & Technol China, Hefei Natl Lab, Hefei 230088, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Quantum key distribution; quantum communication; quantum information; decoy-state method; intensity modulation; pattern effect; DISTRIBUTION ROBUST; DETECTOR;
D O I
10.1109/JLT.2023.3247766
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Decoy-state method has greatly filled in loopholes from multi-photon pulses in the field of quantum key distribution (QKD) and it has been employed in almost all practical QKD systems in recent years. However, security and performance of the practical decoy-state QKDs are still limited by inaccurate modulations such as random intensity fluctuation and correlated intensity fluctuation. In this work, an intensity tomography method is proposed as a countermeasure against these fluctuations. It has an ability to tightly bound the unknown density matrices of photon-number state and accurately calibrate the fluctuations by measuring the decoy states with a local single-photon detector. We verified the tomography method by experiments and simulations. The results indicated that our method can efficiently mitigate the flaws from these fluctuations to improve the protocol performance and practical security. Noting that these fluctuations are inevitable in practical QKDs, our method would pave the avenue for QKD's practical applications.
引用
收藏
页码:4895 / 4900
页数:6
相关论文
共 70 条
[1]  
Azuma K., 1967, TOHOKU MATH J, V19, P357, DOI [10.2748/tmj/1178243286, DOI 10.2748/TMJ/1178243286]
[2]  
Bennett C. H., 1984, P INT C COMP SYST SI, P175, DOI DOI 10.1016/J.TCS.2014.05.025
[3]   Unconditional security of a three state quantum key distribution protocol [J].
Boileau, JC ;
Tamaki, K ;
Batuwantudawe, J ;
Laflamme, R ;
Renes, JM .
PHYSICAL REVIEW LETTERS, 2005, 94 (04)
[4]   Sending-or-Not-Sending with Independent Lasers: Secure Twin-Field Quantum Key Distribution over 509 km [J].
Chen, Jiu-Peng ;
Zhang, Chi ;
Liu, Yang ;
Jiang, Cong ;
Zhang, Weijun ;
Hu, Xiao-Long ;
Guan, Jian-Yu ;
Yu, Zong-Wen ;
Xu, Hai ;
Lin, Jin ;
Li, Ming-Jun ;
Chen, Hao ;
Li, Hao ;
You, Lixing ;
Wang, Zhen ;
Wang, Xiang-Bin ;
Zhang, Qiang ;
Pan, Jian-Wei .
PHYSICAL REVIEW LETTERS, 2020, 124 (07)
[5]  
Comandar LC, 2016, NAT PHOTONICS, V10, P312, DOI [10.1038/NPHOTON.2016.50, 10.1038/nphoton.2016.50]
[6]   Room temperature single-photon detectors for high bit rate quantum key distribution [J].
Comandar, L. C. ;
Froehlich, B. ;
Lucamarini, M. ;
Patel, K. A. ;
Sharpe, A. W. ;
Dynes, J. F. ;
Yuan, Z. L. ;
Penty, R. V. ;
Shields, A. J. .
APPLIED PHYSICS LETTERS, 2014, 104 (02)
[7]   Measurement-device-independent quantum key distribution with insecure sources [J].
Ding, Hua-Jian ;
Zhou, Xing-Yu ;
Zhang, Chun-Hui ;
Li, Jian ;
Wang, Qin .
OPTICS LETTERS, 2022, 47 (03) :665-668
[8]   Afterpulse Analysis for Quantum Key Distribution [J].
Fan-Yuan, Guan-Jie ;
Wang, Chao ;
Wang, Shuang ;
Yin, Zhen-Qiang ;
Liu, He ;
Chen, Wei ;
He, De-Yong ;
Han, Zheng-Fu ;
Guo, Guang-Can .
PHYSICAL REVIEW APPLIED, 2018, 10 (06)
[9]   Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits [J].
Ferreira da Silva, T. ;
Vitoreti, D. ;
Xavier, G. B. ;
do Amaral, G. C. ;
Temporao, G. P. ;
von der Weid, J. P. .
PHYSICAL REVIEW A, 2013, 88 (05)
[10]   Practical decoy-state method for twin-field quantum key distribution [J].
Grasselli, Federico ;
Curty, Marcos .
NEW JOURNAL OF PHYSICS, 2019, 21 (07)